Interactions between improved rural access infrastructure and transport services provision

Report of an Inter-regional Workshop
held 12-13 November 2018, Arusha, Tanzania

Paul Starkey, Robin Workman and John Hine

TRL

ReCAP GEN2136A

December 2018

For further information, please contact:
Robin Workman, Principal International Consultant, TRL: rworkman@trl.co.uk
TRL, Crowthorne House, Nine Mile Ride, Wokingham RG40 3GA, UK

ReCAP Project Management Unit
Cardno Emerging Market (UK) Ltd
Clarendon Business Centre
Level 5, 42 Upper Berkeley Street
Marylebone, London W1H5PW

The views in this document are those of the authors and/or the workshop participants and they do not necessarily reflect the views of the Research for Community Access Partnership (ReCAP) or Cardno Emerging Markets (UK) Ltd for whom the document was prepared

Cover photo: Workshop group photo: Mount Meru Hotel, Arusha.

Quality assurance and review table

<table>
<thead>
<tr>
<th>Version</th>
<th>Author(s)</th>
<th>Reviewer(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>P Starkey, R Workman and J Hine</td>
<td>(TRL)</td>
<td>20 December 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Bradbury (ReCAP PMU)</td>
<td>20 December 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J R Cook (ReCAP TP)</td>
<td>31 December 2018</td>
</tr>
<tr>
<td>1.02</td>
<td>P Starkey, R Workman and J Hine</td>
<td>(TRL)</td>
<td>9 January 2019</td>
</tr>
</tbody>
</table>

ReCAP Database Details:
Interactions between improved rural access infrastructure and transport services provision

<table>
<thead>
<tr>
<th>Reference No:</th>
<th>Location</th>
<th>UK with subsequent research and workshops in AfCAP and AsCAP countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of Proposal</td>
<td>ReCAP PMU</td>
<td>Procurement Method: Open tender</td>
</tr>
<tr>
<td>Theme</td>
<td>Transport Services</td>
<td>Sub-Theme: Effective use of access</td>
</tr>
<tr>
<td>Lead Implementation Organisation</td>
<td>TRL Ltd</td>
<td>Partner Organisation: N/A</td>
</tr>
<tr>
<td>Total Approved Budget</td>
<td>£79,680</td>
<td>Total Used Budget: £52,942</td>
</tr>
<tr>
<td>Start Date</td>
<td>1 May 2018</td>
<td>End Date: 31 January 2019</td>
</tr>
<tr>
<td>Report Due Date</td>
<td>23 November 2018</td>
<td>Date Received: 20 December 2018</td>
</tr>
</tbody>
</table>
Abstract

The ‘Interactions: Maintenance-Provision of Access for Rural Transport Services (IMPARTS)’ research project held an inter-regional workshop between 12-13 November 2018 in Arusha, Tanzania to discuss how investments in low-volume rural roads (LVRR) affect rural transport services (RTS). Most of the 37 participants were from AfCAP road authorities. There were IMPARTS presentations on RTS, LVRR and evidence from road surveys, and inputs from other ReCAP projects. Half the workshop comprised small groups including visits to local LVRRs to survey RTS operators and users. Groups discussed observations, including the importance of motorcycle taxis when roads cannot be used by minibuses. Further group work endorsed the need for integrated approaches to RTS-LVRR planning. This will require institutional collaboration (roads-transport), and survey data of RTS, that could be included in Maintenance Management Systems. Data and simple indicators on RTS volumes and prices can be collected easily. LVRR road guidelines should consider motorcycle safety and options for motorcycle trails. RTS could be stimulated by multi-sectoral logistic strategies, with funding options to assist new RTS initiatives, including an RTS fund. The various innovative approaches for integrated RTS-LVRR planning will require capacity building and modest funding. The anonymous evaluation rated the workshop highly.

Key words
Transport services improvements; Transport services indicators; Traffic counts; Rural mobility; Rural road outcomes; Rural road impacts; Rural road preservation; Rural road provision; Motorcycle Taxis

Research for Community Access Partnership (ReCAP)

Safe and sustainable transport for rural communities

ReCAP is a research programme, funded by UK Aid, with the aim of promoting safe and sustainable transport for rural communities in Africa and Asia. ReCAP comprises the Africa Community Access Partnership (AfCAP) and the Asia Community Access Partnership (AsCAP). These partnerships support knowledge sharing between participating countries in order to enhance the uptake of low cost, proven solutions for rural access that maximise the use of local resources. The ReCAP programme is managed by Cardno Emerging Markets (UK) Ltd.

www.research4cap.org
Acronyms, Units and Currencies

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>United States Dollar. At time of workshop USD 1 ≈ GBP 0.78 ≈ TZS 2300</td>
</tr>
<tr>
<td>4WD</td>
<td>Four-wheel drive</td>
</tr>
<tr>
<td>AfCAP</td>
<td>Africa Community Access Partnership</td>
</tr>
<tr>
<td>ANE</td>
<td>Administração Nacional de Estradas</td>
</tr>
<tr>
<td>AsCAP</td>
<td>Asia Community Access Partnership</td>
</tr>
<tr>
<td>c</td>
<td>cent (USD)</td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate social responsibility</td>
</tr>
<tr>
<td>DFID</td>
<td>Department for International Development, UK</td>
</tr>
<tr>
<td>DFR</td>
<td>Department of Feeder Roads</td>
</tr>
<tr>
<td>DoLIDAR</td>
<td>Department for Local Infrastructure Development and Agricultural Roads, Nepal</td>
</tr>
<tr>
<td>DRC</td>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>eg</td>
<td>for example</td>
</tr>
<tr>
<td>ERA</td>
<td>Ethiopian Roads Authority</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>GBP</td>
<td>Great Britain Pound (UK pound sterling) At workshop, GDP 1 ≈ USD 1.29 ≈ TZS 3000</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GDPR</td>
<td>General Data Project Regulation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical information system</td>
</tr>
<tr>
<td>GIZ</td>
<td>Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>HDM4</td>
<td>Highway Development and Management Model</td>
</tr>
<tr>
<td>IFRTD</td>
<td>International Forum for Rural Transport and Development</td>
</tr>
<tr>
<td>IMPARTS</td>
<td>Interactions: Maintenance-Provision of Access for Rural Transport Services</td>
</tr>
<tr>
<td>IMT</td>
<td>Intermediate means of transport</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>LGED</td>
<td>Local Government Engineering Department</td>
</tr>
<tr>
<td>LVRR</td>
<td>Low-volume rural road</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-governmental organisation</td>
</tr>
<tr>
<td>NTA</td>
<td>National Transit Authority</td>
</tr>
<tr>
<td>PIARC</td>
<td>World Road Association</td>
</tr>
<tr>
<td>PMU</td>
<td>Project Management Unit</td>
</tr>
<tr>
<td>PO‐RALG</td>
<td>President’s Office, Regional Administration and Local Government (Tanzania)</td>
</tr>
<tr>
<td>PPP</td>
<td>Public-private partnerships</td>
</tr>
<tr>
<td>RAI</td>
<td>Rural Access Index</td>
</tr>
<tr>
<td>ReCAP</td>
<td>Research for Community Access Partnership</td>
</tr>
<tr>
<td>RED</td>
<td>Roads Economic Decision (software)</td>
</tr>
<tr>
<td>RTS</td>
<td>Rural transport services</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goal</td>
</tr>
<tr>
<td>SLRA</td>
<td>Sierra Leone Roads Authority</td>
</tr>
<tr>
<td>TARURA</td>
<td>Tanzania Rural and Urban Roads Agency</td>
</tr>
<tr>
<td>ToR</td>
<td>Terms of Reference</td>
</tr>
<tr>
<td>Tsh</td>
<td>Tanzania shilling (see also TZS)</td>
</tr>
<tr>
<td>TZS</td>
<td>Tanzania shilling. At time of workshop USD 1 ≈ TZS 2300; GBP 1 ≈ TZS 3000</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom (of Great Britain and Northern Ireland)</td>
</tr>
<tr>
<td>UKAid</td>
<td>United Kingdom Aid (Department for International Development, UK)</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar. At time of workshop USD 1 ≈ GBP 0.78 ≈ TZS 2300</td>
</tr>
<tr>
<td>VAT</td>
<td>Value Added Tax</td>
</tr>
<tr>
<td>VOC</td>
<td>Vehicle operating costs</td>
</tr>
<tr>
<td>WTP</td>
<td>Willingness to pay</td>
</tr>
</tbody>
</table>
Executive Summary

The ‘Interactions: Maintenance-Provision of Access for Rural Transport Services (IMPARTS)’ research project is studying how the provision and maintenance of low-volume rural roads (LVRRs) impact rural transport services (RTS) and the mobility of people and their goods. The premise is the need for an integrated approach to the provision-preservation-services continuum to ensure road investments are well-planned, cost-effective and appropriate to the transport needs of rural communities.

An inter-regional workshop was held from 12-13 November 2018 in Arusha, Tanzania, with 37 participants from 12 ReCAP countries. All AfCAP and AsCAP countries were invited to nominate participants in the fields of rural roads and transport services. Most of the 29 AfCAP and three AsCAP participants worked for roads authorities. To maximise professional synergies and exchanges, the workshop had contributions from three other ReCAP projects and was timed to allow participation in a PIARC international transport workshop.

The workshop aimed to discuss RTS-LVRR interactions issues raised in the IMPARTS draft scoping report, to increase country interest in the topics raised and to obtain institutional support for the project design framework for implementation in Phase 2 and 3. The workshop methodology was designed to encourage interactions and joint learning, with half the work in small groups, including the field visits, which allowed participants to ‘survey’ rural transport services operators and users.

The workshop started with IMPARTS presentations on RTS, LVRR infrastructure issues affecting RTS and survey evidence of LVRR outcomes and impacts. Three invited ReCAP projects (‘Motorcycle safety’, ‘First Mile’ and ‘RAI’) made presentations. Day one concluded with group discussions on the issues raised, including how road agencies should plan for RTS; road, RTS baseline and outcome information to be collected; and country-based RTS data, expertise and research/training needs. Groups agreed that roads authorities should consider RTS in investment planning. They need relevant data on roads, socio-economic contexts, production and RTS, including modes, passenger/freight volumes, tariffs, loading and safety. Road authorities had little information on RTS and need capacity building and funding for this new approach.

The second day started with three groups visiting LVRRs and learning of road agency practices. Participants interviewed transport operators (motorcycle taxis and minibuses) and different transport users. On return, they discussed their findings and the implications of road condition on RTS and users, the implications for road planning and the data needed to understand LVRR-RTS interactions. Groups were very motivated, presenting many interesting observations and suggestions. Poor roads in the rainy season restricted minibus operations and on all roads motorcycle taxis were the most numerous vehicles. While motorcycles now seem irreplaceable on poor roads, passengers would happily shift to regular minibus services if roads were improved. All groups agreed that an integrated approach to road planning was required, with understanding the local environment, stakeholder consultations and data collection on transport needs and RTS. This needed institutional collaboration, capacity building and funding.

Participants selected four topics to be addressed by the concluding discussion groups. The policy group discussed how integrated LVRR-RTS planning strategies could be achieved. Institutional collaboration or integration is needed (roads agencies and transport authorities). Capacity building on RTS issues, and funding is required. Relevant RTS data could be included in Maintenance Management Systems.

The infrastructure group discussed appropriate infrastructure where motorcycles are the main RTS. LVRR standards need to consider motorcycle use (including width, gravel and concrete strips/edges). Motorcycle trails could be inexpensive and valuable and are increasingly important, with policy and planning implications. Guidelines and advice are needed. The indicator group considered useful planning and evaluation data options and easily-collected outcome indicators. Most were RTS-specific relating to transport modes, volumes, fares and tariffs, obtainable from traffic counts and surveys of operators and users. Safety was important, but a difficult indicator due to data reliability and traffic speeds. The transport services group proposed multi-sector RTS Logistic Strategies to identify and promote transport demand. Options to fund investments included RTS funds, PPPs and credit to help start-ups as demand develops. Road Funds could support (and require) an integrated approach to stimulating RTS. Final discussions endorsed the need for an integrated approach to LVRRs and RTS, requiring high-level policy support, institutional cooperation, capacity building and modest funding.

Participants rated the workshop very highly in anonymous evaluation forms, particularly field visits and group discussions. They learned about RTS and associated policy/survey issues, and how road design/condition affects RTS. Many would have preferred that the workshop had been longer than two days.
1 Background

1.1 Project overview

The Research for Community Access Partnership (ReCAP), funded by UKAid, commissioned TRL to undertake a research study to gain, and to disseminate, a greater understanding of how investments in low-volume rural roads (LVRRs) impact rural transport services (RTS) and the mobility of people and their goods. This project is known as IMPARTS (Interactions: Maintenance-Provision of Access for Rural Transport Services). It is exploring the interaction between the effective use of rural access and its dependency on the appropriate provision and preservation of LVRRs, and the resultant changes in rural transport service provision that are brought about through improved sustainable road performance.

The many benefits of LVRRs are largely dependent on a sustained level of infrastructure performance linked to there being appropriate and affordable transport services: rural roads must be fit for purpose in terms of facilitating the movement of people and freight. Currently, infrastructure provision and preservation are largely disassociated from service provision. Therefore, this project is examining the existing and desirable relationships between LVRRs and transport services, and the links between LVRR-investment planning for provision and preservation and the actual achievement in terms of rural transport provision.

The overall aim of the project is to research changes occurring in rural transport provision consequent to the rehabilitation or upgrade and improved maintenance of LVRRs and networks, and to help identify and optimise transport solutions to poverty caused by poor access. The core objective is to examine the conditions in which rural transport services succeed or fail, and the relevance of infrastructure standards, condition and level of service to that outcome.

Output: definitive guidelines on how the provision-preservation-access continuum can be improved in support of better livelihood opportunities for rural communities and have a positive impact on poverty reduction.

Impact: to improve accessibility and mobility for rural communities, and to improve the overall livelihood outcomes of those communities, and, in particular, vulnerable groups and individuals within those communities.

This research is exploring how infrastructure projects are planned, designed and implemented in relation to the end user and the extent to which projected demand for transport service provision is factored into the planning processes. Through literature reviews, stakeholder consultations and Phase 2 field work, this research will consider the experiences of selected LVRR projects in Africa and Asia to examine whether transport service objectives and accessibility outcomes are being achieved as a result of the planned investment in road infrastructure. In doing so, it will determine whether LVRRs are fit-for-purpose for the generated traffic post-construction, rehabilitation or upgrade, and under what conditions these roads may be over- or under-designed relative to potential and actual demand for passenger and freight trip-making.

The results of this research should eventually lead to:

- A good practice approach to the planning, design and maintenance of new, rehabilitated or upgraded LVRRs and networks that result in improved service access
- Better advice to road planners and engineers on how to engage with beneficiaries of the road infrastructure, including the end user (households, farmers, transport operators, etc.), at the design stage, to optimise integration between roads and transport services
- Assessment of the effectiveness of different engineering solutions on wider transport service provision and accessibility based on empirical evidence
- Better understanding of the role of the private sector in delivering RTS, the institutional limitations within government structures of ensuring appropriate RTS, and identifying enablers for public-private partnerships where appropriate.

Further background, information and analysis is available in the project’s Draft Scoping Report (Starkey et al, 2018) that formed a basis for many of the presentations and discussions at this workshop.
2 Inter-regional workshop

2.1 Workshop objectives, context and timing

The inter-regional workshop was designed to share and discuss the findings of the IMPARTS Draft Scoping Report and engage senior professionals from ReCAP partner countries in discussing and planning research options for Phases 2 and 3 of this project. One objective was to share the initial IMPARTS findings, including the results of the literature review. A second important objective was to assist and encourage participants to engage with the practicalities of how transport services providers respond to changes in rural road infrastructure and the implications for this in terms of research needs and planning processes. Given that most participants were expected to be road engineers, with relatively little experience relating to transport services research, this workshop was intended to assist with high-level capacity building towards a more integrated approach to rural road infrastructure and transport services, consistent with the ReCAP concept of a ‘provision–preservation–services’ continuum.

The workshop was held over a period of two days (12-13 November 2018) in Arusha, Tanzania, immediately before the World Road Association (PIARC) International Seminar on ‘Transport in the Fourth Revolution: Dynamic Low-Income World’. The context was to allow participants to benefit from more than one event, and to create synergies through intellectual cross-fertilisation with other professional colleagues. To increase these exchanges and synergies, there was also a separate workshop with ReCAP ‘First Mile’ project stakeholders (Workman et al, 2018) and there were presentations at the IMPARTS workshop relating to three other ReCAP projects concerning First Mile connectivity, Motorcycle and Three-wheeler Safety and the Rural Access Index (RAI). These are summarised, with bibliographic references, later in this report.

Originally, the workshop had been planned for a two-and-a-half-day period in October, but this was not practicable due to various administrative constraints relating to recent data sharing restrictions (the European General Data Project Regulation or GDPR). Therefore, the planned content of the workshop had to fit into just two days, which made the schedule tight and the working days long (as many participants noted in their evaluation comments).

2.2 Workshop participants

Invitations were sent out to the ReCAP representatives in all AfCAP countries (Democratic Republic of Congo, Ethiopia, Ghana, Kenya, Liberia, Malawi, Mozambique, Sierra Leone, South Sudan, Tanzania, Uganda and Zambia) and all AsCAP countries (Afghanistan, Bangladesh, Myanmar, Nepal, Pakistan), as well as various organisations associated with ReCAP and transport services research. ReCAP member countries were asked to nominate up to two people, one specialising in rural road engineering and one specialising in transport services. There were some people who could not attend due to visa issues or their work schedules. Finally, 37 people participated from 13 countries. Of the 32 participants from AfCAP (29) and AsCAP (3) countries, 28 worked for roads authorities and four worked for organisations concerned with transport services. The names, countries and organisations of participants are provided in Annex A.

2.3 Workshop methodology and programme

The methodology was intended to be very interactive and practical, with almost half the time spent working on issues in small groups, including the field visit assignments. The first morning was allocated to presentations, informing the participants about the IMPARTS research and its scoping report conclusions, taking perspectives relating to transport services, engineering and researching the impacts and outcomes of changes in rural road infrastructure and transport services. Some of this session was attended by the Secretary General of the World Roads Association (PIARC) who was introduced and welcomed participants to attend the PIARC Seminar being held after the IMPARTS workshop. The beginning of the first afternoon, provided an opportunity to introduce other relevant ReCAP-supported research (Motorcycle Safety, the First Mile and the Rural Access Index). The participants were then divided into three groups (balanced as far as practicable for countries, regions, gender and specialisations). The groups all had to address several questions and issues arising from the IMPARTS scoping report including:

- How road agencies, engineers and planners should plan for appropriate transport services?
The second day started early, with the same three groups leaving to visit three different low-volume rural roads and talk with stakeholders about recent changes to the roads and to transport services. The groups had been recommended to sub-divide into smaller units to ensure that discussions with transport operators, market stall holders, and passengers was not intimidating, and all participants would have an opportunity to pose questions. Participants had been asked to talk with stakeholders to find out information on tariffs, transport frequencies, and the seasonality of access and transport services. On returning to the workshop venue, the same groups deliberated the lessons they had learned, before presenting these in a plenary session.

In the afternoon of Day 2, four key topics were agreed for further group discussions. Participants were free to go to their preferred topic (with some minor voluntary balancing for group sizes). The groups discussed:

- **Policy.** Policy and institutional implications of integrating the planning of rural transport services and rural transport infrastructure
- **Appropriate infrastructure.** The rural transport infrastructure that is appropriate where motorcycles and IMTs are the main transport services
- **Research and outcome indicators.** Key indicators of transport services that are easily measurable
- **Transport services.** Planning mechanisms or incentives that can be used to improve the quality and quantity of rural transport services.

In the final session, the groups presented their conclusions in a plenary session, allowing for clarifications, comments and some discussion. Following the conclusions of the group work, the workshop was formally closed with words from the host country, ReCAP and the project team. This then allowed optional attendance at an additional session in which some participants presented examples of transport services and rural infrastructure in their countries. All participants stayed on to benefit from these presentations.

The detailed workshop programme is provided in Annex B.

Figure 1 Photo montage of plenary sessions
2.4 Workshop thematic and country-based presentations

The PowerPoint presentations made at the workshop are attached in Annex D and summarised briefly in the following paragraphs.

Introduction to IMPARTS and the ReCAP ‘transport services event’
Robin Workman, IMPARTS Researcher, introduced the workshop in the context of a series of linked transport services events, supported by ReCAP and clustered to enable professional exchanges and synergy. Following the IMPARTS workshop, there was a workshop for the ‘First Mile’ project, also funded by ReCAP and managed by TRL. More details about the First Mile Research were presented during the IMPARTS workshop, along with information concerning the ReCAP Safe Motorcycle and Three-wheeler project and the Rural Access Index (RAI) project. The day after the IMPARTS workshop there was a World Road Association (PIARC) conference in Arusha to which participants were welcome.

Transport services on low-volume rural roads
Paul Starkey, the IMPARTS Team Leader, presented information on rural transport services, going through the characteristics of different types of transport services on low volume rural road and issues relating to their operations and the regulatory authorities. The importance of the ‘first mile’ of connectivity was illustrated as well as the growing importance of motorcycle taxis in many ReCAP countries.

LVRR engineering issues that affect rural transport services
Robin Workman presented information on infrastructure issues to be considered when planning for the LVRR provision-preservation-services continuum. This presentation covered numerous factors to consider when planning road construction, upgrading, rehabilitation and routine maintenance, and how these affect transport services in various ways.

Reflections on earlier rural road traffic studies
John Hine, IMPARTS Consultant, presented information from the literature and recent studies on the effects road investments have had on traffic volumes. Examples were discussed of road investments in Ethiopia, Kenya and Tanzania. More details on some of these examples are available in the IMPARTS Scoping Report (Starkey et al, 2018).

Introduction to IMPARTS Phase 2/3 work, implications and reactions
Paul Starkey introduced the research questions to be addressed in Phases 2 and 3. He discussed the outcomes and impacts of road investments, with theories of change following LVRR road investment and road neglect, as well as potential data to be collected and possible indicators of changes.

Safe use of motorcycles and three-wheelers for rural transport
George Malekela, of the NGO Amend, presented the work of the ReCAP RAF2114A project on the use of motorcycles and three-wheelers, that is being led by Transaid and working in Ghana, Kenya, Tanzania and Uganda. The work had focused on motorcycles and their benefits (including widespread use for emergency transport) and disbenefits (including crashes, some of which were ascribed to poor road condition). Further information is available on the ReCAP website (including Bishop et al, 2018a and 2018b).

Importance of first mile infrastructure and transport services
Robin Workman, John Hine and Shedrack Willio (IFRTD Consultant) made a joint presentation concerning the ReCAP RAF2109A project researching the costs and benefits of improving first mile access for small scale farmers. Examples were provided of changing first mile access and marketing conditions for several crops grown in the research study areas of Kenya and Tanzania. Further information is available on the ReCAP website (including Workman et al, 2018).

Introduction to the ReCAP Rural Access Index (RAI) project
Robin Workman, TRL RAI Team Leader, introduced the ReCAP GEN2033D project that aims to work with the World Bank and other stakeholders to harmonise approaches for the measurement of the Rural Access Index (RAI) and increase the number of countries actively using this SDG indicator. Further information concerning this project (and the RAI) is available on the ReCAP website.

Rural road database and traffic volumes in Bangladesh
Syed Abdur Rahim, of the Local Government Engineering Department (LGED) in Bangladesh, presented the
work of the LGED and its database of rural roads, showing traffic count information. Examples were given of interventions and the wide variety of transport services modes in use on LVRR. Due to the complicated links to the database contained within the presentation, it is not available in Annex D.

Impact of the rural access infrastructure on transport services provision in the DRC

Théodore Ngambila, of the Ministry of Infrastructure and Public Works in the Democratic Republic of the Congo, presented some statistics concerning rural road upgrades in South Ubangi Province. Prior to the upgrades, the main means of transport were walking, bicycles and motorcycles. Following the upgrade bicycle use decreased, motorcycles increased greatly, and light trucks started to operate on the roads. The fares charged to passengers decreased by 43% while freight tariffs fell by 18%.

Rural roads and transport services in Nepal

Ram Chandra Shrestha of the Department of Local Infrastructure (DoLI), Nepal, presented illustrations of rural road upgrading in Nepal. Two examples were provided of very large increases in traffic volumes, following rehabilitation. All vehicle types including motorcycles, jeeps/pickups, trucks and minibuses increased significantly (up to ten fold), and the numbers of shops along the road increased greatly too.

Rural roads and transport services in Sierra Leone

Tamba Amara of the Sierra Leone Roads Authority presented examples of LVRR improvements and their effect on transport services which are mainly motorcycle taxis, with some minibuses (‘poda-podas’). Data on traffic volumes and passenger and freight tariffs have been recorded for three years on upgraded and non-upgraded roads. So far, there has been significant variation between the years, but no clear trends have been identified.

South Sudan Rural Roads

George Duku and Aduot Madit of the Ministry of Roads and Bridges, South Sudan presented the South Sudan Rural Roads project that is rehabilitating 150 km or roads and providing spot improvements on a further 300 km. One of the monitoring indicators used is the Rural Access Index (RAI).

2.5 Workshop group discussions on Day 1

The first group work was designed to allow all participants to start to explore the various IMPARTS themes, as highlighted in the scoping report and the various plenary presentations. Each of the three groups had been given the same four questions to help guide the discussions:

- How road agencies, engineers and planners should plan for appropriate transport services?
- What key information is required for baseline surveys and impact surveys?
- What interest, expertise and data resources relevant to IMPARTS exist in ReCAP countries?
- What are the needs in terms of research gaps and capacity building?

In practice, much of the group work was very wide-ranging, as participants shared their many and diverse experiences and opinions. Most group members were familiar with infrastructure issues, but were only beginning to explore issues relating to transport services and how changes in infrastructure impact them. The group reporting reflected the relatively short time available for discussions and the exploratory nature of these initial discussions.

It was widely agreed that planning for rural roads should be based on a range of data and survey tools, taking into consideration a broad spectrum of transport needs, stakeholder opinions, transport services, environmental issues, technical feasibility and cost benefit analyses. When surveying for road improvement feasibility, baseline studies and impact surveys, there were many parameters to study including, type of road, road condition, terrain, population served, levels of production, traffic data, transport modes, passenger numbers and mix, travel times, fares and tariffs, income of transporters, the reliability and safety of transport services (including crash information). Options for road funding should be considered in the planning as well as local resources that would be available (human and materials). However, it was recognised that in many countries the political agenda drove resource allocation and decision making relating to road investment. Road construction/rehabilitation was generally prioritised over essential routine maintenance.
Within participating ReCAP countries, there was thought to be little data available about transport services within road authorities. Information collection seldom went beyond traffic counts. In most countries, there appeared to be no active policies or strategies to improve rural transport services. Identified constraints included the poor institutional links between roads authorities and transport services specialists, and the fact that people tended to work (and think) in isolated ‘silos’, surrounded by people of the same disciplinary background. There is a need for more inter-disciplinary collaboration, with associated training and capacity building. This would require guidance and financial resources for road planning individuals and departments as well as funding for transport research institutes with integrated (infrastructure-transport services) approaches and mandates. Research and resources were required to obtain more information.

It was generally agreed that all participating countries were interested in a more integrated approach to infrastructure and transport services, but that the road authorities and agencies lacked specific expertise relating to transport services. There were both resource issues (lack of budgets for survey work and work relating to transport services) and institutional hurdles (understanding transport services was not considered part of the mandates of roads authorities). Capacity building in this area was clearly important and would be welcome. Participants would welcome collaborating with ReCAP, IMPARTS researchers and other stakeholders to further develop the various ideas presented.

2.6 Workshop field visit and related small group discussions

2.6.1 Objectives

The field visit was intended to:

- Allow participants to visit a road and learn from the TARURA hosts the processes for prioritising road interventions.
- Give an opportunity for participants to question transport operators concerning the importance of rural road conditions for transport services and how they react to changing conditions
- Give an opportunity for participants to question rural people (different transport services users) concerning the importance to them of transport services and rural road condition
- Provide shared examples from the visited roads and transport services stakeholders to inform subsequent group-discussions relating to infrastructure-transport services interactions and research issues relevant to IMPARTS Phase 2 work.

2.6.2 Organisation and activities

Participants were divided into three groups (one minibus per group) each with about 10 people, selected to ensure diversity (countries, disciplines, gender, etc). All groups had at least two Tanzanians to allow on-site explanation of TARURA rehabilitation and maintenance planning issues, as well as ensure there were no problems related to language or local protocols. Each group went to a separate road, the context of which had been briefly explained, with the help of a schematic map (see Figure 1). Following an initial joint introduction to the road and its infrastructure issues by a TARURA engineer, the participants split into smaller groups to interview transport operators (including motorcycle taxi operators) and transport users. Structured questionnaires were not used, as the aim was open-ended information collection through talking with local stakeholders to jointly explore the issues that arose spontaneously from the introductory questions and discussions.

Participants were asked to try to interview a range of different types of transport operators and a diversity of transport users (differing as far as practicable by age, gender, occupation and physical ability). Notes had been provided about appropriate introductions, and some suggested lines of questioning. These included changes in infrastructure and transport services in recent years, and suggested reasons for the changes. There were also questions relating to users’ and operators’ preferences and opinions relating to rural infrastructure and transport modes, how transport services could be improved and various questions relating to costs, schedules, waiting times, comfort, over-crowding, safety and security and carrying freight. Participants were encouraged to mentally ‘triangulate’ the different sources of information including what they saw and what the different stakeholders said. This methodology allows people to identify discrepancies and explore the reasons for the diversity of people’s opinions or understanding. Naturally,
the various stakeholders were thanked for their time and given opportunities to ask questions to the participants.

![Schematic map showing the three different rural roads visited by workshop groups](image)

2.6.3 Discussions and presentations of the lessons and issues

On returning to the workshop venue, the field visit groups each discussed what they had learned, and did so in the context of the following questions:

- How do different transport services respond to changes in LVRR condition?
- What are the implications for rural people?
- What lessons (if any) can be carried forward relating to LVRR designs and LVRR planning?
- What data collection is needed to understand rural transport services?
- What research is needed to understand how transport services respond to infrastructure changes?

The three groups then reported on what they had seen and learned from the field visits, as well as the implications of this for planning rural road infrastructure and transport services, and related survey data requirements.

Group visit to Sakila Road

Group 1 had visited the 16 km, U-shaped alignment that reaches Sakila on the foothills of Mount Meru, as it climbs from and descends back to the main Arusha-Moshi highway. It is a hilly area, where soils are good, allowing a wide variety of marketed crops including vegetables and bananas. The unsealed road was very rough, but some recent work had been done to improve drainage issues on some sections. The majority of vehicles were motorcycles, carrying people and goods. There were some minibus services, but the road was both rough and steep (in places), and minibus services were unreliable. This was a particular problem in the rainy season (and fares increased at this time). Pickups were widely used to collect farm produce, and they often carried passengers but their schedules were unpredictable, and were not considered reliable public transport services. Therefore, motorcycle taxis were the most widely used means of transport for passengers and small freight loads. If the roads were rehabilitated, minibuses would be likely to become the main means of public transport, and the group felt that research was needed on the implications of such a change for the motorcycle taxi operators, and how their earnings would be affected by road investments.
Based on their on-road observations, the group thought that key data needed for road planning should include levels of agricultural production, road condition, transport times, costs and fares, crash data and the potential funding available. In terms of research requirements, key issues appeared to be how transport services tariffs respond to changing road conditions, how transport services composition changes with road improvements and deterioration (in particular, the shift between motorcycle taxis and taxis/minibuses) and how such changes impact rural communities and the vehicle operators (including motorcycle taxis operators). There was also a perceived need to research how best to regulate transport services and their operators on low-volume rural roads. The group also suggested there was a need to share studies showing how local economies could be transformed by rural road investments and transport services.

Group visit to Matiba Road

Group 2 travelled the 23 km road to Matiba, in a very different area to the south of the Arusha-Moshi highway. This was not in the mountain foothills, but on a more arid plain, with poorer soils and less potential for crop production. Animal production, notably cattle grazing, was very important here, and the villages were mainly populated by people of the Masai ethnic group with a tradition of cattle herding. Donkeys and ox carts assisted with rural transport. The unpaved road was very rough and poor, and sections of it were flooded during the rainy season. Ideally, the carriageway should be raised in places to prevent this. There used to be minibus services during the dry season, but the poor state of the road now meant that motorcycle taxis were the main (and often only) means of transport. Typical fares are TZS 5000 (about USD 2) from Matiba village to the highway. This is about USD 10c per passenger-kilometre. Because the road is bad, this rate per person does not change if two people are carried. However, motorcycle fares do increase considerably in the evening, rising to TZS 8000 (about USD 15c per passenger-kilometre).

Before the road was built, people had to walk long distances. When the road was first constructed, there were minibus services, and people came to install electricity, water pumps and health services. As the road deteriorated through lack of maintenance, minibuses were reduced and motorcycles became the main means of transport. Freight volumes were thought to decrease, although animal drawn carts are still used to bring some farm produce to the markets on the highway. Maize can be stored before sale, and so is often transported in the dry season, at TZS 20,000 or USD 9 per 500 kg ox cart load to the highway. This represents about USD 0.9 per tonne-kilometre, which is cheaper than motorcycle transport. Even
motorcycles struggle in the rainy season, with slippery surfaces, and motorcyclists unwilling to carry large loads.

The group considered that given the population and productive environment, additional road investment including raising some low sections and sealing the surface, would probably be justified and bring many social and economic benefits to the area. Data should be collected on local production, existing transport services and their tariffs. An integrated approach to rural road planning was required with research into how transport services respond to road improvements and deterioration.

Group visit to King’ori Road

Group 3 visited the first section of the 33 km Malula to Ngarenanyuki Road, which is classified as a ‘collector’ road as it serves a large catchment area, with many roads feeding into it and at Ngarenanyuki it links with a road that joins the A104 Kenya Border Highway. Nevertheless, the road surface is very rough and beyond the King’ori market there are difficult sections that are sometimes impassable and frequently cut off for much of the rainy season. The road gradually rises towards the slopes of Mount Meru and serves quite a fertile agricultural area. The carriageway is nominally 7 m wide, but with a rough, eroded surface, vehicles follow meandering routes, trying to avoid the roughest parts. In 2017/18, the Road Fund provided TZS 60 million (USD 25,000) to improve a 5 km section of the road, but there is no contractor undertaking routine maintenance.

Due to the large catchment population, there are many transport services options, mainly minibuses and motorcycle taxis. There are also some larger buses, but these are infrequent and travel slowly on the rough road. Minibuses and large buses charge the same fares. Minibuses often travel beyond the main highway and reach Arusha, but only make one trip a day, due to market saturation. Minibuses carry loads, but these are relatively expensive at TZS 5000 (about USD 2) per 50 kg, or USD 4 per tonne-kilometre. Minibuses charge TZS 2000 (about USD 90c) for the 10 km from King’ori to the highway, which is about USD 9c per passenger-kilometre. Motorcycles charge 50% more than this, because they provide a faster service, with no waiting and faster travel speeds along the poor-quality road.

The group noted that with the road in poor condition, the cost of maintaining vehicles was high. The number and range of services decreased with the road in poor condition, with many fewer services along the whole road in the rainy season. The group felt that greater attention should be given to good drainage and maintenance by the road engineers, in order to provide an all-season road. In the short term, emphasis should be on spot improvement to ensure basic access so that transport services can operate. The cost of
transporting people and goods was high, but rural people could not increase the sale price of their produce to compensate, as this was determined by the market competition along the main highway.

Figure 5 Photo montage illustrating some aspects of the King’ori Road

When they had the option, rural women preferred to travel in minibuses rather than motorcycles, because they considered the minibuses to be safer and cheaper, although they took more time. However, when there was no option, for example in emergencies, they travelled on motorcycle taxis.

The group considered that there was a need for institutional harmonisation to allow multi-disciplinary research relating to roads and transport services. Some key parameters needed to understand rural transport services, were people’s economic activities, journey purposes, key travel origins and destinations and the goods that needed to be transported. These had to be understood in relation to the different transport types available, their costs of operation and the fares and freight tariffs they charged.

2.7 Concluding group discussions

2.7.1 Policy
The group discussed ‘Policy and institutional implications of integrating the planning of rural transport services and rural transport infrastructure’. There was clear consensus that an integrated approach was needed, and that road planning should take into consideration existing and planned transport services. One key problem was that road agencies seldom had a mandate to work on transport services issues, and until recently they had not really considered this as a desirable option. The second big problem was that road agencies have very little knowledge, understanding or experience of the transport services issues and the types of transport services data that might be needed for planning purposes. Arguably, there is an immediate need for training and capacity building relating to transport services, and for road agencies to consider wider transport services issues and not simply traffic counts. In the longer term, this also has implications for the curricula of road engineering and road planning courses at universities.

One suggestion to start the process of integration was for agencies to start collecting transport services data and store this in roads-orientated databases, such as Maintenance Management Systems. Such a roads-and-transport-services database could be developed as an integral component of the existing Maintenance Management System, or it could be a separate database with appropriate links to the Maintenance Management software. There would be road-linked data on the traffic volumes (which should exist already) but also more information on the numbers of transport services operators, fares, tariffs,
frequencies, travel times, loads and other characteristics of the various modes of transport services operating along the road. Data collection could be done in collaboration with transport services authorities (encouraging active collaboration) or the road agencies could be mandated to collect this information for LVRR. When it came to planning road investments, the database could be interrogated, providing transport services planning information on the target road and associated linked roads.

Figure 6 Photo montage of group discussions

2.7.2 Appropriate infrastructure

The group discussed ‘The rural transport infrastructure that is appropriate where motorcycles and Intermediate Means of Transport (IMTs) are the main transport services’. The group listed many of the infrastructure-related issues that need to be taken into consideration when planning rural roads including traffic, population served, geometry/alignment, material availability, surface options, structures and maintenance costs. There were also various economic issues, including agricultural potential and markets, and social issues, notably access to public services including health and education. There was a need to understand existing transport services, including bicycles, motorcycles and three-wheelers. It was also crucial to have a reliable understanding of how transport services would change if the infrastructure was upgraded. Most existing standards assumed significant use by ‘conventional’ vehicles (with four or more wheels) and these could be over-designed and excessively expensive if they were to be used mainly by motorcycles and other IMTs.

It was acknowledged that motorcycle trails have particular benefits as low-cost options for linking off-road villages to the road network. Few countries had appropriate standards or even guidelines for the construction and maintenance of motorcycle trails. Some guidelines should be made available to advise community groups or contactors developing new trails. There was clearly a case for developing a lower-level category of rural infrastructure in the recognition that motorcycle trails and tracks were increasingly important in many (but not all) countries. Some participants believed that when motorcycle trails are developed there would be quick uptake, leading to demand for full-width roads within maybe three years. In such a scenario it would be more cost effective to construct the full road in the first place, rather than upgrade a trail after just three years.

In terms of conventional roads, there were many issues that needed to be considered and, where appropriate, addressed. Gravel roads could provide safety issues for motorcycles (e.g. loss of traction around bends) and so low-cost seals should be used if possible if there are many motorcycles. Parallel
Concrete strips are designed for four-wheel vehicles on LVRR where two vehicles seldom meet. However, they pose dangers for motorcycles, as these vehicles often meet and pass each other. Getting on and off the strips can be hazardous for motorcycles if the concrete is ‘proud’ with ridges that can induce skidding. Concrete joiners between the concrete strips that are proud make the use of three-wheelers impractical. Any concrete road that is proud of the surrounding shoulders present hazards to motorcycles if they have to leave the carriageway due to an on-coming vehicle. The group could not reach a consensus on appropriate carriageway widths, particularly if there were mixed traffic (some conventional vehicles and some motorcycles or three-wheelers). Lane marking is seldom practicable on LVRRs, and, whatever the lane markings, both conventional vehicles and motorcycles tend to make their own rules on LVRRs.

2.7.3 Research and outcome indicators

The group discussed ‘Key indicators of transport services that are easily measurable’. The emphasis was on ‘outcome’ indicators that change quite rapidly (in one-to-three years) rather than impact indicators (that often change over timescales of five years or more). Changes to transport services (fares, freight tariffs, frequencies, modal composition, loading levels) are considered to be outcome indicators that can be easy to measure through small surveys, including traffic counts, operator and user surveys. Changes to incomes, agricultural production, public health, housing and educational levels are generally considered impact indicators which require quite large-scale surveys to obtain reliable data. Although impact indicators are important, the large amount of data needed is expensive to collect, and the indicators tend to change gradually over periods of 5-10 years, and this limits their widespread application in planning rural transport services.

Various measures of transport services (modal split, passenger and freight volumes, prices, frequency, reliability, seasonality, etc) are easy to measure and generally reliable as indicators of road use and outcomes of road investments. Safety is clearly important but a difficult indicator to measure. Police and hospital records of crashes can be difficult to access and are seldom accurate when it comes to individual roads. The recall of community leaders, focus groups, transport operators and transport users can be used to assess crashes. However, it is generally found that despite the appearance of dangerous practices on LVRRs, serious crashes are rare, compared to the crash rates on national roads and in urban/peri-urban areas. In general, crash severity increases with speed, and so road investments and improvements in road conditions actually reduce safety, making it a ‘perverse’ indicator to measure, albeit an important one.

Transport planning software, such as the Highway Development and Management Model (HDM4) and Road Economic Decision Model (RED), includes estimates of vehicle operating costs (VOCs). However, the VOCs of informal sector operators are notoriously difficult to capture accurately, with ‘make-do and mend’ vehicles that often operate on several different roads. Thus, while HDM4 can be calibrated for rural roads, VOCs are not suggested as easily-measurable outcome indicators.

Other suggested outcome indicators for rural roads were visible enterprises along the road, numbers and size of market stalls and employment levels and supervisory visits in local schools and clinics. These are all expected to increase as road and transport services improve and decrease as roads and transport services decline due to poor maintenance.

2.7.4 Transport services

The group discussed ‘What planning mechanisms or incentives can be used to improve the quality and quantity of rural transport services?’ The group considered issues affecting transport services from the operators’ perspectives (e.g. transport demand, quality of the infrastructure), and the users’ perspectives (e.g. socio-economic needs for mobility and transport tariffs, reliability and efficiency). To encourage transport services there was a need to stimulate the market demand, for example by stimulating increased agricultural production. There should be an integrated, multi-sectoral approach to developing a Rural Transport Services Logistics strategy, which could identify areas with real and intrinsic demand for rural transport services, where investment in transport services would be profitable for the private sector or Public Private Partnerships (PPP). Many ministries concerned with rural areas should be involved with local stakeholders in developing Rural Transport Logistics Strategies. They would include, where appropriate,
Ministries of Public Works, Transport, Agriculture, Health, Labour, Industry, Trade (inland trade corridors), etc. Such a transport strategy should be linked to integrated land-use planning in rural areas.

The group discussed ways in which improvements in rural transport services could be funded. One option would be to encourage private firms to invest in rural transport services as part of their corporate social responsibility (CSR). To create synergies between road investments and transport services the option of performance-based contracts for rural road maintenance should be considered where possible with labour-based practices. With the successful establishment of road funds, similar funds could be established to promote transport services. To assist potential investors in rural transport services, there could be scoping data available on actual and latent transport demand and willingness to pay (WTP). There could be inducements to the private sector, including potential guarantee schemes for loans to invest in vehicles and initial operations. Public-private partnerships (PPP) could be established to fund the initial viability gaps of new rural transport services, allowing start-up enterprises in areas of below-optimal demand, that could become profitable once people adapt to the new services, leading to increased demand and operational profitability.

There was general agreement that the way forward would be easier if roads agencies were actively involved in the planning of improved transport services. There should be clear planning links between road construction, maintenance and rural transport services. Road funds could not only support this, but could make financial disbursements conditional on such integrated approaches.

2.8 Workshop concluding remarks and follow-up actions

The final discussions confirmed the general agreement that a more integrated approach to road investments is required, in line with the idea of a roads ‘provision–preservation–services’ continuum. This involves inter-institutional and inter-disciplinary collaboration and needs to be anchored at high level, through clear policy objectives. When a policy is in place, the institutional structures and responsibilities need to be defined at all levels. There was agreement for a need to capture data relating to rural transport services to inform decisions relating to road maintenance and rehabilitation. Where motorcycle taxis are widely used, this should inform planning investments for appropriate access infrastructure suitable for ensuring safe use of such modes of transport services. With the need for road agencies to engage with, and understand, rural transport services, there is a clear need for relevant training and capacity building. For this to happen there would need to be national and regional champions and clear examples of good practice. The amount of additional funding required would not be great, especially if there were options to obtain both funding and enforcement of good practices through the road funds. All participants and their departments need to be motivated to ensure that this integrated approach is adopted, and would benefit rural people.

In their closing remarks, both the ReCAP and Project Team representatives thanked the participants for attending and their great enthusiasm and commitment as they worked very productively for two very hard days. The various organisers and facilitators were thanked, including the TARURA engineers who assisted with field visit planning and implementation.

The Tanzanian hosts thanked all participants for their many inputs and dedication to the subject matter, and formally closed the workshop.

2.9 Workshop evaluation

At the end of the workshop, evaluation forms were distributed, and participants were asked to complete them anonymously. A total of 30 completed forms were returned. The full evaluation report is provided in Annex C, but highlights are summarised here.

Participants were asked to assess 25 different aspects of the workshop on a five-point scale. Participant responses were mainly very positive, with 89% of assessments made being ‘very good’ or ‘good’, and 10% being ‘OK’. There were high scores for the ‘overall impression’ and ‘usefulness’ of the workshop, as well as for the workshop facilitation and travel arrangements. The programme elements rated the highest were
the field visits and their associated briefings and the small group discussions. Most of the presentations were closely clustered, with scores better than ‘good’.

Participants were asked to note three things they had learned from the workshop. The most commonly cited lessons were about rural transport services and related policy issues. A second cluster of things learned related to outcome indicators for road investments and surveys of rural transport services. A third key lesson related to the infrastructure-transport services continuum and the need for integrated infrastructure-transport services policy and planning. A fourth cluster of responses related to planning and designing roads for rural transport services.

Participants were asked ‘what was the best and most useful aspect of the workshop?’ Most answers related to the field visits and the group discussions. When asked how the workshop could have been improved, most people wanted more time. It was clear from the participants’ comments and rating of the timetable that compressing the two-and-a-half-day programme into two days had been tough, but valuable. Participants appeared to have wanted more time, rather than less content.

3 Next steps

Following the workshop there will be a series of follow-ups. The workshop report (this document: Starkey et al., 2019a) will be circulated to participants and uploaded to the ReCAP website. It should be noted that this document reports the activities, deliberations and conclusions of the workshop participants. While the IMPARTS team and the ReCAP PMU will assess the various opinions expressed, these may not necessarily reflect the views of the IMPARTS team and/or the ReCAP PMU.

The revised Phase 1 Scoping Study Report (Starkey et al., 2019b) will be finalised, and will also be circulated to participants and be made available through the ReCAP website. This will contain more concrete plans for Phases 2 and 3, that will build upon Phase 1 research and the formal and informal discussions held during the workshop. As most participants stayed on for the PIARC workshop, there had been several opportunities for the team to discuss in greater detail options for Phase 2 research with participants from several possible countries. There will be a break of about one month, to allow the revised Scoping Study Report to be reviewed and, if the proposals are approved, for the work of Phases 2 and 3 to be contracted. Subject to contract agreements, Phase 2 is likely to start in February 2019.

4 References

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr Tamba Amara</td>
<td>Sierra Leone Roads Authority</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Mr Salvatory Antipasy</td>
<td>TARURA</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Richard Augustino</td>
<td>TARURA</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Bernard Badu</td>
<td>Department of Feeder Roads</td>
<td>Ghana</td>
</tr>
<tr>
<td>Mr Patrick Bekoe</td>
<td>Ministry of Roads and Highways</td>
<td>Ghana</td>
</tr>
<tr>
<td>Mr Francis Bockarie</td>
<td>Sierra Leone Roads Authority</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Dr Annabel Bradbury</td>
<td>Cardno/ReCAP PMU</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Mr Francis Dimu</td>
<td>Roads Authority</td>
<td>Malawi</td>
</tr>
<tr>
<td>Mr George Duku</td>
<td>Ministry of Roads and Bridges</td>
<td>South Sudan</td>
</tr>
<tr>
<td>Mr Moises Dzimba</td>
<td>Administração Nacional de Estradas</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Mr Alemayehu Endale</td>
<td>Ethiopian Roads Authority</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>Mr Luis Fernandes</td>
<td>Administração Nacional de Estradas</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Mr Yitagesu Halala</td>
<td>Ethiopian Roads Authority</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>Mr Sumoiwu Harris</td>
<td>Ministry of Public Works</td>
<td>Liberia</td>
</tr>
<tr>
<td>Mr John Hine</td>
<td>Independent consultant (TRL)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Ms Joseline Kagombora</td>
<td>Tanzania Rural and Urban Roads Agency</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Willard Kaunde</td>
<td>Roads Authority Malawi</td>
<td>Malawi</td>
</tr>
<tr>
<td>Mr Alibaba Kpakolo</td>
<td>Ministry of Public Works</td>
<td>Liberia</td>
</tr>
<tr>
<td>Ms Siaruth kimaro</td>
<td>TARURA</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Bruno Kinyaga</td>
<td>Tanzania Roads Association</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Vincent Lwanda</td>
<td>Tanzania Rural and Urban Roads Agency</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Aduot Madit</td>
<td>Ministry of Roads and Bridges</td>
<td>South Sudan</td>
</tr>
<tr>
<td>Ms Josephine Mwankusye</td>
<td>Independent consultant (STET)</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr George Malekela</td>
<td>Amend.Org</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Théodore Ngambila</td>
<td>Ministère des Infrastructures et Travaux Publics</td>
<td>Democratic Republic of the Congo</td>
</tr>
<tr>
<td>Dr Emmerentian Mbabazi</td>
<td>Uganda National Roads Authority</td>
<td>Uganda</td>
</tr>
<tr>
<td>Mr Henry Nkwanga</td>
<td>Cardno/ReCAP PMU</td>
<td>Uganda</td>
</tr>
<tr>
<td>Mr Benedictus Dotu Nyan</td>
<td>National Transit Authority</td>
<td>Liberia</td>
</tr>
<tr>
<td>Mr Syed Abdur Rahim</td>
<td>Local Government Engineering Department</td>
<td>Bangladesh</td>
</tr>
<tr>
<td>Mr Hira Lal Regmi</td>
<td>Department of Local Infrastructure</td>
<td>Nepal</td>
</tr>
<tr>
<td>Dr Mark Henry Rubarenzya</td>
<td>Uganda National Roads Authority</td>
<td>Uganda</td>
</tr>
<tr>
<td>Mr Baraka Sanga</td>
<td>TARURA</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Ram Chandra Shrestha</td>
<td>Department of Local Infrastructure</td>
<td>Nepal</td>
</tr>
<tr>
<td>Mr Paul Starkey</td>
<td>Independent consultant (TRL)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Mr Billy Tshibambe</td>
<td>Ministère des Infrastructures et Travaux Publics</td>
<td>Democratic Republic of the Congo</td>
</tr>
<tr>
<td>Mr Shedrack Willilo</td>
<td>STET International Limited</td>
<td>Tanzania</td>
</tr>
<tr>
<td>Mr Robin Workman</td>
<td>TRL</td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>
Annex B: Workshop programme

IMPARTS Workshop 12-13 November 2018, Mount Meru Hotel, Arusha, Tanzania

Workshop Programme

DAY 0: Sunday 11th November 2018

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.00-22.00</td>
<td>Arrivals of IMPARTS international participants</td>
<td>Millennium XL</td>
</tr>
</tbody>
</table>

IMPARTS Workshop Day 1: Monday 12th November 2018.

Chairing/Reporting: Joseline Kagombora and Vincent Lwanda (TBC)

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00-08.45</td>
<td>Registration</td>
<td>Millennium XL</td>
</tr>
<tr>
<td>09.00-09.30</td>
<td>Welcome, introductions, objectives and schedule</td>
<td>Vincent Lwanda (TARURA), Robin Workman (TRL) and Annabel Bradbury (ReCAP)</td>
</tr>
<tr>
<td>09.30-09.50</td>
<td>Transport services on LVRR</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>09.50-10.20</td>
<td>Introduction to workshop themes, issues and outputs Clariifications and questions</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>10.20-10.30</td>
<td>Coffee/Tea Break</td>
<td></td>
</tr>
</tbody>
</table>

DAY 1: Monday 12th November 2018.

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00-11.20</td>
<td>LVRR Engineering issues that affect rural transport services Clariifications and questions</td>
<td>Robin Workman</td>
</tr>
<tr>
<td>11.20-11.30</td>
<td>Measuring impacts of roads on Rural Transport Service: literature overview and key studies Clariifications and questions</td>
<td>John Hine</td>
</tr>
<tr>
<td>11.30–11.50</td>
<td>Measuring impacts of roads on Rural Transport Service: literature overview and key studies Clariifications and questions</td>
<td>John Hine</td>
</tr>
<tr>
<td>11.50–12.00</td>
<td>Measuring impacts of roads on Rural Transport Service: literature overview and key studies Clariifications and questions</td>
<td>John Hine</td>
</tr>
<tr>
<td>12.00-12.20</td>
<td>Introduction to Phase 2/3 work, implications and reactions Clariifications and questions</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>12.20-12.30</td>
<td>Introduction to Phase 2/3 work, implications and reactions Clariifications and questions</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>12.30–13.00</td>
<td>Plenary reactions on implications of all presentations</td>
<td>Josephine Mwankusye</td>
</tr>
<tr>
<td>13.00-14.00</td>
<td>Lunch Break</td>
<td></td>
</tr>
</tbody>
</table>

DAY 1: Monday 12th November 2018.

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.00-14.20</td>
<td>Motorcycle and three-wheeler transport services Clariifications and questions</td>
<td>George Malekela, AMEND</td>
</tr>
<tr>
<td>14.20-14.30</td>
<td>Importance of first mile infrastructure and transport services Clariifications and questions</td>
<td>Shedrack Willio, John Hine and Robin Workman</td>
</tr>
<tr>
<td>14.30-14.50</td>
<td>Importance of first mile infrastructure and transport services Clariifications and questions</td>
<td>Shedrack Willio, John Hine and Robin Workman</td>
</tr>
<tr>
<td>14.50-15.00</td>
<td>Introduction to the ReCAP Rural Access Index (RAI) project</td>
<td>Robin Workman</td>
</tr>
<tr>
<td>15.00-15.15</td>
<td>Plenary reactions and implications</td>
<td>Josephine Mwankusye</td>
</tr>
<tr>
<td>15.15-15.45</td>
<td>Introduction to group discussions, objectives and outputs</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>15.45-16.00</td>
<td>GROUP DISCUSSIONS (with working coffee/tea break). Working groups building on presentations/scoping report focussing on key issues relating to the IMPARTS guideline requirements and/or research needs. All groups discuss: How road agencies, engineers and planners should plan for appropriate transport services? What key information is required for baseline surveys and impact surveys? What interest, expertise and data resources exist in ReCAP countries? What are the needs in terms of research gaps and capacity building?</td>
<td></td>
</tr>
<tr>
<td>16.00-17.30</td>
<td>GROUP DISCUSSIONS (with working coffee/tea break). Working groups building on presentations/scoping report focussing on key issues relating to the IMPARTS guideline requirements and/or research needs. All groups discuss: How road agencies, engineers and planners should plan for appropriate transport services? What key information is required for baseline surveys and impact surveys? What interest, expertise and data resources exist in ReCAP countries? What are the needs in terms of research gaps and capacity building?</td>
<td></td>
</tr>
<tr>
<td>17.30-18.00</td>
<td>Plenary reporting/feedback on group discussions</td>
<td>Josephine Mwankusye</td>
</tr>
<tr>
<td>18.00-18.15</td>
<td>Briefing on field visits</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>TIME</td>
<td>ACTIVITY</td>
<td>Responsibility</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>7.30-12.30</td>
<td>Field visits in small groups: How do transport services respond to changes in rural roads? Each group will visit LVRR and discuss infrastructure quality and issues with stakeholders including transport services operators (minibuses, taxis, motorcycle taxis/’bodabodas’, small trucks) and rural transport users (women, men, farmers, etc).</td>
<td>Josephine Mwankusye</td>
</tr>
<tr>
<td>12.30-13.30</td>
<td>Lunch (packed lunch on return journey)</td>
<td></td>
</tr>
<tr>
<td>13.30-14.30</td>
<td>Thematic working groups orientated to summarising lessons learned and key issues raised by visit, and the research requirements and policy implications of their thematic group. How have transport services have responded to changes in LVRR condition? What were the implications for rural people? What lessons (if any) can be carried forward relating to LVRR designs? LVRR planning? Data needed to understand rural transport services? What research needs seem important to understand how transport services respond to infrastructure changes?</td>
<td></td>
</tr>
<tr>
<td>14.30-15.00</td>
<td>Brief reporting, feedback and introduction of thematic groups</td>
<td>Josephine Mwankusye</td>
</tr>
<tr>
<td>15.00-15.30</td>
<td>Tea/Coffee break</td>
<td></td>
</tr>
</tbody>
</table>
| 15.30-16.30 | **Thematic working groups**:
Policy: Policy and institutional implications of integrating the planning of rural transport services and rural transport infrastructure
Appropriate infrastructure: Type(s) of infrastructure are needed where motorcycles and IMTs are the main transport services
Research and outcome indicators: key indicators of transport services that are easily measurable
Transport services: Planning mechanisms or incentives can be used to improve the quality and quantity of rural transport services | |
| 16.30-17.00 | **Brief reporting and feedback** | Josephine Mwankusye |
| 17.00-17.30 | **Key recommendations and follow ups** | Paul Starkey |
| 17.30-18.00 | **Workshop conclusions and closure** | Vincent Lwanda, Robin Workman and Annabel Bradbury |
| 18.00-19.00 | **Optional additional session: Presentations of several country experiences** | |
Annex C: Workshop evaluation report

At the end of the workshop, evaluation forms were distributed, and participants were asked to complete them anonymously. A total of 30 completed forms were returned. In the following paragraphs, the figures in brackets give an indication of the numbers of participants that referred to the various issues noted.

Participant assessments

Participants were asked to assess 25 different aspects of the workshop on a scale of A (very useful, very good) through C (OK) to E (very poor). The information on the various forms was consolidated and the average responses were ranked using a scoring system (see Table D1). Responses were generally very positive. Of 733 assessments made, 89% were ‘very good’ or ‘good’, 10% were ‘OK’, 1% were ‘rather weak’ and none was ‘very poor’. This level of approval is considered high, given the diversity of the participants and the tendency of disgruntled people to use evaluation forms to complain.

The overall impression and usefulness of the workshop were rated very highly, as was the workshop facilitation, and the travel arrangements and role of XL Millennium. The only organisational element rated below ‘good’ was the workshop timetable, and it was clear from participants comments (see section on ‘suggestions for improvement’) that they felt that the workshop was too short.

The programme elements rated the highest were the field visits and their associated briefings, small group discussions and group presentations, the first thematic group discussion, the workshop introduction and the presentation on transport services. However, most of the programme elements were closely clustered, with scores better than ‘good’.

Things learned

Participants were asked to note three things they had learned from the workshop. Many participants wrote complex sentences, referring to multiple issues, which have had to be simplified in this summary. The most commonly cited thing that was learned related to rural transport services. In particular, rural transport services:

- policy issues (18)
- research needs (8)
- transport types (6)
- motorcycle taxis (4)
- planning and data needs (4)
- overall importance (3)
- regulation issues (1)
- safety (1)
- fares (1).

The second major element learned related to measuring changes in rural transport services, and specifically:

- outcome indicators (15)
- monitoring and evaluation systems (3).

The third major lesson related to the infrastructure-transport services continuum discussed, and specifically:

- road infrastructure-transport services interactions (7)
- need for integrated infrastructure-services policy and planning (6)
- involvement of rural stakeholders (2).

The fourth cluster of responses centred around lessons relating to infrastructure design and planning, including:

- designing roads for rural transport services (5)
- planning roads (2).

There were also mentions of sharing experiences (4), ReCAP (3), the RAI (2), learning Tanzanian experiences (2), the field visit (2), ‘first mile’ issues (1) and presentations (1).

Best and most useful aspects

Participants were asked ‘what was the best and most useful aspect of the workshop?’ Most answers clustered around two main programme elements:

- field visits (16) (one participant described them as “awesome”), and the
 - group discussions (16).

People also liked the

- sharing of experiences (6)
- interactive nature of the workshop (4).
Specific topics mentioned included understanding rural transport services (5), outcome indicators (4), “everything” (4), phase 2/3 research (2) and various [different] presentations (5).

Suggestions for improvement
When asked how the workshop could have been improved, most people wanted a longer workshop. Some simply wrote ‘workshop timing’ (8) and others were more specific with:

- more time overall (19)
- more time for field visits (4)
- more time for country presentations (3)
- more time for presentations and discussions (3).

Some people (4) wanted some form of touristic visit as part of the programme while some simply said ‘all good’ (3). There were single mentions of certain aspects of the group discussions, field visits and presentations.

Other comments
In response to the opportunity to give ‘any other comments’, several participants commented, with thanks, on the fact it had be a valuable workshop (8) that had been well organised and planned (2) although it needed more time (2). There was a single mention of the need to develop a rural road HDM4 and one person said they were looking forward to the IMPARTS outputs and guidelines.

Table D1: Summary of numbers of different evaluation responses (ranked by average score)

<table>
<thead>
<tr>
<th>Question</th>
<th>A*</th>
<th>B*</th>
<th>C*</th>
<th>D*</th>
<th>E*</th>
<th>Score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop overview and organisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop: overall impression</td>
<td>19</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8.9</td>
</tr>
<tr>
<td>Travel arrangements and XL Millennium</td>
<td>20</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.9</td>
</tr>
<tr>
<td>Workshop: Facilitation</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>Workshop: Overall usefulness</td>
<td>15</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8.4</td>
</tr>
<tr>
<td>Hotel: Workshop facilities</td>
<td>13</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8.2</td>
</tr>
<tr>
<td>Workshop: Meeting expectations</td>
<td>12</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.1</td>
</tr>
<tr>
<td>Hotel: Accommodation and food</td>
<td>12</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8.0</td>
</tr>
<tr>
<td>Workshop: Logistical organisation</td>
<td>13</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>8.0</td>
</tr>
<tr>
<td>Workshop: Meeting objectives</td>
<td>11</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>7.8</td>
</tr>
<tr>
<td>Workshop: Schedule and timetable</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>6.7</td>
</tr>
<tr>
<td>Workshop programme elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field visit</td>
<td>19</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8.8</td>
</tr>
<tr>
<td>Presentation on ‘Transport Services’</td>
<td>16</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8.6</td>
</tr>
<tr>
<td>Workshop introduction</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.6</td>
</tr>
<tr>
<td>Group presentations after field visits</td>
<td>17</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.6</td>
</tr>
<tr>
<td>Field visit briefing and organisation</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>8.5</td>
</tr>
<tr>
<td>Group discussions after field visit</td>
<td>17</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8.4</td>
</tr>
<tr>
<td>Group discussions Day 1</td>
<td>15</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.4</td>
</tr>
<tr>
<td>Presentation on ‘Measuring Outcomes’</td>
<td>12</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8.2</td>
</tr>
<tr>
<td>Presentation on ‘First Mile’</td>
<td>12</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.1</td>
</tr>
<tr>
<td>Presentation on ‘Rural Access Index’</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8.1</td>
</tr>
<tr>
<td>Presentation on ‘Infrastructure Issues’</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8.1</td>
</tr>
<tr>
<td>Plenary presentations of groups Day 1</td>
<td>12</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.1</td>
</tr>
<tr>
<td>Final plenary reporting and discussions</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7.8</td>
</tr>
<tr>
<td>Group discussions on Themes Day 2</td>
<td>10</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>7.7</td>
</tr>
<tr>
<td>Presentation on ‘Motorcycles and 3-wheelers’</td>
<td>3</td>
<td>19</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Scores over 7.0 have an overall rating better than ‘Good’

*Scoring system based on Very Good = 10; Good = 7; OK = 5; Poor = 3; Very poor = 0
Interactions between improved rural access infrastructure and transport services provision

Report of an Inter-regional Workshop
held 12-13 November 2018, Arusha, Tanzania

Annex D:
Plenary Presentations and
Country Presentations
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

The Event:

- **IMPARTS**
 - Monday 12 & Tuesday 13 November

- **First Mile**
 - Wednesday 14 November, presentation a.m. and workshop p.m.

- **PIARC**
 - Wednesday 14 to Friday 16 November
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

IMPARTS
Interactions: Maintenance and Provision of Access for Rural Transport Services

Title: Interactions between improved rural access infrastructure and transport services provision

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Research study to gain and disseminate a greater understanding of how investments in low-volume rural roads impact rural transport services and the mobility of people and their goods.

- How can infrastructure provision and maintenance be managed to encourage appropriate transport services on low volume rural roads?
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

The problems:

- Planning carried out in isolation
- Needs of communities are not considered
- Roads do not automatically generate transport services
- The transport services generated may be inappropriate
- Transport use may be inequitable
- There may be negative effects of new transport

Phase 1
Scoping study:

- Strategic review of existing and prevailing research into the relationships between current practice in provision and preservation of rural access and the end-product delivery of effective transport services.
 - Literature review
 - Project design framework
 - Seek support from partners (Asia and Africa)
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

Phase 2

- Acquire secondary data on ‘post-upgrade’ transport service changes (both passenger and freight), and undertake field data collection to examine such changes (including cost differentials) compared to before any infrastructure interventions were implemented.

Key research questions in Phase 2:

- Have changes to passenger and freight transport service provision brought about benefits or disbenefits for the rural poor and low income communities?
- Are the engineering solutions sustainable and fit-for-purpose in terms of wider transport service provision and accessibility?
- What are the effects of poor maintenance/road deterioration on RTS provision following rehabilitation/upgrading?
- What other constraints to transport service expansion exist?
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

Phase 3

- Explore market based solutions to transport service issues within the provision-preservation-access use continuum,
- Investigate the motivations of the private sector to provide transport services in rural areas,
- Consider the government structures that organise and regulate these services along with the legal and policy frameworks in which they operate, both in Africa and Asia.

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Key research questions in Phase 3:

- What is preventing services being scaled up and extended to remote areas where they would have most impact?
- Are rural transport subsidies an option in low income countries?
- What can be learnt from rural transport service operations and the institutional environment in which they function in Africa and Asia?

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

- **Output**: definitive guidelines on how the *provision-preservation-access* continuum can be improved in support of better livelihood opportunities for rural communities and have a positive impact on poverty reduction.

- **Impact**: to improve accessibility and mobility for rural communities and to improve the overall livelihood outcomes of those communities, and, in particular, vulnerable groups and individuals within those communities.

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania

First Mile

Title: Evaluation of the cost-beneficial improvement of first mile access on small-scale farming and agricultural marketing

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

Concept of the ‘First Mile’:
- **Definition:** A primary transport segment from the farm to a collection/consolidation point, typically found at the key junctions of a motorable (low volume) road.
- **Context:** Potential exploitable benefits of smallholder farming productivity and the impact that improved access to rural markets can have for local small-scale economies.

Aim of the First Mile research:
- To extend the evidence base for the benefits associated with access improvements to small-scale farmers, and the potential impact that those benefits have on food security and poverty reduction on a much wider scale.
Phase 1

Inception:
- Detailed programme
- Identification of key issues
- Establish links in Tanzania and Kenya

Phase 2

- Review of previous work
- Identification of principal challenges and definition of research required to inform eventual outputs
- Identification of research sites – one research site in each country.
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

Phase 3

- Undertake targeted data collection, gender disaggregated where applicable, gathering in a range of identified small holding environments followed by analysis.
- Summarise the implications of this research
- Identify how it may be carried forward into practical application.

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania

Phase 4

- Draft the range of outputs
- Undertake a number of knowledge dissemination exercises, including those most suited to output uptake at the farm and village level.

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

PIARC conference
- Transport in the fourth revolution: “A complex and dynamical low-income world”

Focus on the impact of investment in transport infrastructure on low-income countries
- The objective of the seminar is to raise awareness, share expertise, experience and best practice on the importance and benefits of investing in transport infrastructure
Introduction to the ReCAP workshop and transport services event
Robin Workman, TRL Researcher, UK

The Transport Revolutions

First Revolution:
- 1800’s: Steam engine, industrialisation, urbanisation (railways in 1830’s)

Second Revolution:
- Early 1900’s: Industrial growth triggered by electric power (motor vehicles and aviation)

Third Revolution:
- 1980’s to now: The digital revolution (computers in vehicles, GPS, satellites, navigation)

Fourth Revolution:
- The new digital revolution, smart technologies, total connectivity, a sociological space enabling interconnectedness

Other:

Enhancing the understanding on safe motorcycle and three-wheeler use for rural transport
- Transaid, Amend: Africa

Rural Access Index (RAI)
- TRL
Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Outline of presentation

- Rural access and transport services
 ‘provision, preservation and transport services continuum’
- Types of transport services
- Key issues in rural transport services
- Crucial importance of ‘first mile’ connectivity to road network
- Need for proactive planning from authorities (including roads authorities)
Rural people need access to livelihoods, markets, health services, education and numerous economic, social and civic opportunities

Proximity of services

Infrastructure to reach services (rural roads, trails, trail bridges, waterways)

Means of transport and transport services

Most rural people in low income countries do not own motorised transport and so depend on transport services

Appropriate infrastructure and transport services are crucial for poverty reduction, rural development and meeting SDGs

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Rural people need good access

There is compelling evidence (reviewed in IMPARTS scoping study) that connecting rural villages leads to beneficial impacts including:

- Reduced levels of absolute poverty
- Reduced maternal and child mortality
- Higher school attendance of pupils (and teachers!)
- Higher agricultural production and economic activity
- Very positive effects on national GDP
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Need for roads and transport services

- Where practicable, all villages should be connected to, or close to, suitable all-season roads
- Most people do not have their own motorised transport, so there must also be suitable public ‘transport services’ that can carry people and their goods

‘Improved transport services’ is a major justification for investing in rural roads

- Many investments in roads are ‘justified’ by assumptions that they will lead to ‘improved transport services’ (an outcome) that will in turn allow beneficial impacts
- Yet most countries are not ‘measuring’ rural transport services to gather evidence of this
- Most road authorities have little involvement with transport services to understand and to ‘measure’ how road investments are ‘fit-for-purpose’ for rural mobility and the local transport services
Rural men and women want transport services that are:

- Timely
- Affordable
- Carry goods
- Appropriate and safe

In many countries it is illegal to mix passengers and freight!
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Rural transport services
Transport is a gender issue
Rural women generally want transport services that are:

- Timely (guaranteed same-day return is a key gender issue)
- Affordable: women often have less access to money for transport
- Appropriate and safe (crowded vehicles can be threatening)
- Allow multi-tasking journeys

Rural Transport for Sustainable Development, 13 March 2017, Vientiane, Lao PDR

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

- Buses (mainly inter-urban roads)
- Minibuses (need quite good infrastructure)
- Jeeps and rural taxis
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

- Passenger trucks and passenger pickups (strong, very flexible and appreciated)

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

- Motorcycles and motorcycle taxis
 - Transforming rural transport in many countries
 - Villages 2 km from road can be ‘on the road’
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

- Power tillers
- Three wheelers
- Bicycles, tricycles

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Rural transport services characteristics

- Informal sector, some associations
- Often owner-operators or operators renting vehicles on daily basis
- Often old vehicles (low capital costs)
- Need full (or over-full) loads to cover costs and make modest operating profit
- Operate from hubs (often district hubs) and may operated on various roads on different days of the week
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Motorcycle hubs

Motorcycle taxis operate from roadside hubs in towns, at road junctions and in villages

The motorcycle taxis provide valuable employment to vulnerable youths in both urban and rural areas

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Rural transport services issues

- Most rural people want transport that carries people and small freight (mixed transport)
- Availability/frequency and price are crucial
- Safety looks very poor, but little evidence of key concern (insufficient disaggregated data)
- Enforcement weak as rural enforcers sympathetic (some corruption)
- Cartels can be serious problem (eg, Nepal).
Rural transport services authorities
- Small and underfunded (compared to roads agencies)
- Urban based, urban perspectives
- Concentrate on administrative regulation
- May engage with urban and inter-urban transport services
- Often not present at devolved rural level
- Any rural regulation is negative prohibition
- No proactive positive planning for rural transport

Example of Talawanda-Bago road in Bagamoyo District, Tanzania

In 2013, no district roads in Bagamoyo had regular public transport services apart from motorcycles
Motorcycles are transforming rural access

Remarkable transport ‘revolution’ in many countries in the past ten years

Motorcycles are often the commonest vehicles on rural roads

Motorcycle taxi numbers have increased greatly in many countries in recent years

Major importance to rural communities for passenger and freight transport

Their contribution to transport and development is often rated very highly by people

Motorcycles often contribute over 75% of annual passenger market and annual small freight on rural roads
In Tanzania motorcycle numbers increased from about 2,000 in 2003 to over 800,000 in 2014.

From: Bishop and Amos, 2015

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Motorcycle taxis complement and link with larger transport

Often more expensive than other transport services

People use motorcycle taxis because

- They are more timely
- They are more convenient (point to point)
- There are no alternatives

In general they complement ‘conventional’ transport services and do not compete directly

IMPACTS Workshop, 12-13 November 2018, Arusha, Tanzania
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Motorcycles are transforming rural access
Motorcycles can be a risky transport option

- Often operated by risk-taking young men
- Low use of helmets
- Lack of driver training
- Overloading
- Behaviour of other road users
- Lack of insurance

Three-wheelers also important and have a role

- Three wheelers need quite good roads or tracks and they cannot use simple footpaths

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
In most countries, many villages are not yet on a road.

Research shows greatest benefits to rural health, education and agriculture comes from connecting villages for the first time for motorised transport (even if motorcycle trails and trail bridges).
Liberia project to construct motorcycle trails

Motorcycle trails connecting villages to the road network
Labour-based work for women and men
Implemented by community-based organisations
Engineering advice (drainage etc)

As soon as trails were useable, motorcycle taxis came to the isolated villages, taking people to market, medical facilities and schools

And service providers (medical, water and sanitation) started outreach to the previously isolated villages

Motorcycle trails are transforming rural access

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Transport services on low volume rural roads
Paul Starkey, TRL IMPARTS Team Leader, UK

Investments in suspension bridges

Suspension bridges over large rivers

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Transport Services/Infrastructure issues

- Develop integrated approaches to rural roads, and the transport provision-preservation-services continuum
- Develop integrated approaches to planning road investments in infrastructure (road agencies to engage with transport services)
- Collect transport services data for planning and monitoring purposes
- Ensure roads are fit-for-purpose' and appropriate to the transport needs and prevailing transport services
- Ensure some ‘first mile’ connectivity to all villages (m/c trails)
- Understand rural transport needs and options from the point of view of rural people: be tolerant and do not over-regulate
- Seek solutions that positively improve rural access and mobility
- Develop sustainable integrated transport systems with several complementary transport modes
Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
LVRR Engineering issues that affect Transport Services
Robin Workman
Senior Researcher

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania

Contents

- Planning
 - Construction
 - Upgrading
 - Rehabilitation
 - Routine/recurrent maintenance

Provision – Preservation - Services

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Factors to consider in LVRR planning

- Traffic ✓
- Traffic growth ✓
- Population served ?
- Geometry/Alignment: gradient, width, hairpins, etc. ?
- Surface type: paved, gravel, earth, cobbles, etc. ?
- Maintenance: cost, roughness, riding quality ?
- Structures: water crossings, bridges, culverts, walls, etc. ?
- Access to public services ?
- Economic development ?
- Cost/affordability of future transport services ✗
- Impact on poverty ✗
- Travel time ✗
- Road Safety ✗
- Vehicle operating costs ✗
- Pollution ✗
Factors to consider in LVRR planning

- Traffic
- Traffic growth
- Population served
- Geometry/Alignment: gradient, width, hairpins, etc.
- Surface type: paved, gravel, earth, cobbles, etc.
- Maintenance: cost, roughness, riding quality, time
- Structures: water crossings, bridges, culverts, walls, etc.
- Access to public services
- Economic development
- Cost/affordability of future transport services
- Impact on poverty
- Travel time
- Road Safety
- Vehicle operating costs
- Pollution

Road Geometry/Alignment

Typical LVRR cross section
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Hill cross section

Dry areas

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Road width

- Different vehicles for access
- Single / double lane
- Passing points

<table>
<thead>
<tr>
<th>Road Function</th>
<th>Design class</th>
<th>Traffic (ADT)</th>
<th>Surface type</th>
<th>Roadway width (m)</th>
<th>Passing places</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic access</td>
<td>D</td>
<td>100–300</td>
<td>Paved/Unpaved</td>
<td>4.5–5.5</td>
<td>As required</td>
</tr>
<tr>
<td>Basic access</td>
<td>E</td>
<td>100–300</td>
<td>Paved/Unpaved</td>
<td>3.5–4.5</td>
<td>As required</td>
</tr>
<tr>
<td>Basic access</td>
<td>F</td>
<td>100–300</td>
<td>Earth/Gravel</td>
<td>3.0–3.5</td>
<td>As required</td>
</tr>
</tbody>
</table>

ReCAP

Vertical and horizontal options

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Hairpin bend
Source: ANE, Geometric design manual (2017)

Surface type
Paved
- Bituminous
- Concrete
- Cobblestone
- Stone soling

Unpaved
- Gravel
- Earth

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Source: adapted from Galehouse et al. (2006)

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Managerial
- Manuals
- Guidelines
- Asset Management systems

Technical
- Standards
- Specifications
- Routine, recurrent, periodic
- Pavement, structures, drainage
- Materials
- Training and techniques
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Road roughness and grading frequency

- Gradings per year
- Roughness, IRI, m/km

Source: Ethiopian Roads Authority (2002)

Maintenance

- Economic
 - Cost of the asset
 - Maintenance burden
 - Competing against new construction funds
 - Increasing backlog
 - HDM-4, RED
 - Vehicle operating costs

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Maintenance

Political
- Focus on new construction
- Maintenance more administration
- Tendering issues

Roughness

Causes
- Potholes
- Erosion
- Soft spots
- Loss of gravel
- Loss of shape
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Roughness
Measurement (IRI)
- Visual
- Profilometer
- Bump integrator
- Smartphone apps
- Accelerometers
- UAVs

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads

Robin Workman, TRL Researcher, UK

Speed and VOCs as a consideration

Source: Archondo-Callao (1999)

Structures

Water crossings

- Ford
- Drift/causeway
- Vented causeway
- Bridge
- Culvert
Engineering issues that affect transport services on low-volume rural roads

Robin Workman, TRL Researcher, UK

Source: TRL, ORN16 (1997)

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Engineering issues that affect transport services on low-volume rural roads

Robin Workman, TRL Researcher, UK

Road Safety

- Alignment
- Confidence blocks
- Crash barriers
- Lighting

Vehicle Operating Costs

Cost to vehicles due to the road
- Tyres
- Fuel
- Suspension
- Air filters
- General maintenance
Engineering issues that affect transport services on low-volume rural roads
Robin Workman, TRL Researcher, UK

Pollution

- Dust
- Emissions
- Regulation

Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Issues
- Journey Purpose & Trip Distance
- Modal Split
- Traffic Variability and Growth
- Fares
- Different types of Interventions
- Organising Traffic Surveys
- Deriving Impact: Before & After /With Without Analysis

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Main Sources of Data:

- TRL Household Surveys in Ghana & Malawi, in 2001
- Ethiopian Surveys for ERA carried out by WT Consult and Wabekbon, 2015 to 2017. In support of the large Universal Rural Road Access Programme (URRAP).
- Traffic Surveys in Tanzania 2015-2017 under the IRAT (Improving Rural Access in Tanzania) DFID supported (£35m) programme to remove rural road bottlenecks.
- Traffic Surveys in Kenya for the AfD supported Roads 2000 rural roads programme in Murang’a and Nyandarua Districts.

Average number of household trips per year: Rural Ghana, TRL 2001

- Market
- Grinding mill
- Harvest transport
- Education
- Funerals
- Friends and...
- Health centres etc.
- Employment
- Religion
- Post & telephone
- Farm inputs
- Miscellaneous

- Motorised trips
- Non-motorised trips
- Mixed motorised/ non motorised
- Unspecified

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Trip Distances for rural Ghana and Malawi (source TRL, 2001)

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Trip frequency in 4 regions of Ethiopia.
Source: WT Consult. for ERA (2015)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Relative frequency %</th>
<th>Means of transport used</th>
<th>Distance km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Walking</td>
<td>Motorcycle/ bajaj</td>
</tr>
<tr>
<td>Market</td>
<td>15.8</td>
<td>56</td>
<td>16</td>
</tr>
<tr>
<td>Hospital</td>
<td>3.6</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Clinic</td>
<td>3.6</td>
<td>56</td>
<td>23</td>
</tr>
<tr>
<td>Health post</td>
<td>6.2</td>
<td>97</td>
<td>1.3</td>
</tr>
<tr>
<td>Health centre</td>
<td>6.8</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>School</td>
<td>5.7</td>
<td>96</td>
<td>1.8</td>
</tr>
<tr>
<td>Religious centre</td>
<td>11.2</td>
<td>98</td>
<td>0.9</td>
</tr>
<tr>
<td>Recreation place</td>
<td>2.4</td>
<td>67</td>
<td>12</td>
</tr>
<tr>
<td>Relatives</td>
<td>7.7</td>
<td>60</td>
<td>12</td>
</tr>
<tr>
<td>Kebele centre</td>
<td>8.9</td>
<td>88</td>
<td>4.2</td>
</tr>
<tr>
<td>Woreda centre</td>
<td>8.1</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Regional centre</td>
<td>1.7</td>
<td>6.3</td>
<td>7.8</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Average daily non-motorised traffic volumes, 4 Regions of Ethiopia Source: Wabekon, 2017

<table>
<thead>
<tr>
<th>Mode</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycle</td>
<td>14</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Animal cart</td>
<td>81</td>
<td>64</td>
<td>28</td>
</tr>
<tr>
<td>Pack animals</td>
<td>196</td>
<td>170</td>
<td>147</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>522</td>
<td>593</td>
<td>897</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>112</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>820</td>
<td>960</td>
<td>1,125</td>
</tr>
</tbody>
</table>

Average motorised traffic volumes, 4 regions in Ethiopia, Source: Wabekon, 2017

<table>
<thead>
<tr>
<th>Mode</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycles</td>
<td>28.9</td>
<td>99.1</td>
<td>66.2</td>
</tr>
<tr>
<td>Bajaj three-wheelers</td>
<td>9.8</td>
<td>14.7</td>
<td>7.0</td>
</tr>
<tr>
<td>Cars</td>
<td>1.7</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Pickups/4WD</td>
<td>5.0</td>
<td>4.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Mini buses</td>
<td>6.7</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Large buses</td>
<td>2.7</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Small trucks</td>
<td>4.7</td>
<td>5.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Heavy trucks</td>
<td>5.6</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Truck with trailer</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>73.7</td>
<td>138.7</td>
<td>83.7</td>
</tr>
</tbody>
</table>
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Traffic Variability in Senegal 2017

Average Daily Traffic per Month
March 2016 to February 2017

Fares and freight tariffs on LVRRs in Kenya, Tanzania and Cameroon. Source: Starkey et.al 2013

<table>
<thead>
<tr>
<th>Road location (all roads were graded, all-season roads)</th>
<th>Transport mode</th>
<th>Passenger fares (US cents per passenger-km)</th>
<th>Small freight costs (US cents per tonne-km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilolo, Iringa, Tanzania,</td>
<td>Bus</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Midi-bus</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Minibus</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>Gitugi, Murang’a, Kenya</td>
<td>Midi-bus</td>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Minibus</td>
<td>10</td>
<td>103</td>
</tr>
<tr>
<td>Pitoa, Northern Cameroon</td>
<td>Open truck</td>
<td>8</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Minibus</td>
<td>6</td>
<td>138</td>
</tr>
<tr>
<td>Kilolo, Iringa, Tanzania,</td>
<td>Motorcycle</td>
<td>34</td>
<td>602</td>
</tr>
<tr>
<td>Gitugi, Murang’a, Kenya</td>
<td>Motorcycle</td>
<td>18</td>
<td>116</td>
</tr>
<tr>
<td>Pitoa, Northern Cameroon</td>
<td>Motorcycle</td>
<td>13</td>
<td>151</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Example of IRAT Road in Siha (on side of Mt. Kilimanjaro)
Before and during construction

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

IRAT Programme: Some difficult conditions

IRAT: Different types of construction

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Tanzania IRAT project: traffic data (median observation) for 10 completed roads and controls. Source: Cardno, 2017

<table>
<thead>
<tr>
<th>Traffic</th>
<th>10 project roads</th>
<th>Control/connecting roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2017</td>
<td>2015</td>
</tr>
<tr>
<td>Cars</td>
<td>2.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Pickups and 4WD</td>
<td>8.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Minibuses</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Large buses</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Trucks</td>
<td>0.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Tractors</td>
<td>2.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>86.0</td>
<td>174.8</td>
</tr>
<tr>
<td>Bicycles</td>
<td>52.0</td>
<td>93.4</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>184.1</td>
<td>185.9</td>
</tr>
<tr>
<td>Animals</td>
<td>1.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

IRAT:
Wet & Dry Season Counts

TRAFFIC COUNT FORM BOTTLENECK STUDY BAHI DISTRICT: DODOMA (2016)

COORDINATES: (06°23'52.8"S, 35°44'33.9"E)

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>City</th>
<th>Coordinates</th>
<th>Mode</th>
<th>Count</th>
<th>Mode</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-Mar</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Cars</td>
<td>117</td>
<td>3.0</td>
<td>21</td>
</tr>
<tr>
<td>23-Mar</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Pickup</td>
<td>4</td>
<td>9.3</td>
<td>11</td>
</tr>
<tr>
<td>24-Mar</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Minibus</td>
<td>9</td>
<td>6.7</td>
<td>12</td>
</tr>
<tr>
<td>Mar, 2016</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Large bus</td>
<td>12</td>
<td>8.7</td>
<td>6</td>
</tr>
<tr>
<td>07-Sep</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Truck</td>
<td>5</td>
<td>2.3</td>
<td>10</td>
</tr>
<tr>
<td>08-Sep</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Tractor</td>
<td>2</td>
<td>2.0</td>
<td>6</td>
</tr>
<tr>
<td>09-Sep</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Animal</td>
<td>38</td>
<td>56</td>
<td>29</td>
</tr>
<tr>
<td>Sep, 2016</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>M.Cycle</td>
<td>74</td>
<td>76</td>
<td>66</td>
</tr>
<tr>
<td>Jul, 2015</td>
<td></td>
<td></td>
<td></td>
<td>Bicycle</td>
<td>74</td>
<td>57</td>
<td>61</td>
</tr>
<tr>
<td>Sept, 2016</td>
<td></td>
<td></td>
<td></td>
<td>Pedestrian</td>
<td>165</td>
<td>132</td>
<td>106</td>
</tr>
<tr>
<td>22-Mar</td>
<td>6am-6pm</td>
<td></td>
<td></td>
<td>Motorised ex m.bikes</td>
<td>36</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Kenya Roads 2000 Programme:
Motorcycle Fares Ksh per km, Source TRL, 2016
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Kenya Roads 2000 Programme:
Matatu Fares Ksh per km, Source TRL, 2016

Ongoing improvements to gravel roads in Kenya.

Kenya Roads 2000 Programme:
Freight Charges Ksh/kg/km, Source TRL, 2016

Ongoing improvements to gravel roads in Kenya.

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Reflections on earlier rural road traffic studies
John Hine, TRL Consultant, UK

Roads 2000: Is roughness the issue?

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania

Roads 2000: Well Maintained?

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
IMPARTS Project Phases 2 and 3
Paul Starkey, TRL IMPARTS Team Leader, UK

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Title: Interactions between improved rural access infrastructure and transport services provision
Research study to gain and disseminate a greater understanding of how investments in low-volume rural roads impact rural transport services and the mobility of people and their goods.

- How can infrastructure provision and maintenance be managed to encourage appropriate transport services on low volume rural roads?

Phase 2

- Acquire secondary data on ‘post-upgrade’ transport service changes (both passenger and freight), and undertake field data collection to examine such changes (including cost differentials) compared to before any infrastructure interventions were implemented.
Key research questions in Phase 2:

- Have changes to passenger and freight transport service provision brought about benefits or disbenefits for the rural poor and low income communities?
- Are the engineering solutions sustainable and fit-for-purpose in terms of wider transport service provision and accessibility?
- What are the effects of poor maintenance/road deterioration on RTS provision following rehabilitation/upgrading?
- What other constraints to transport service expansion exist?

Phase 3

- Explore market based solutions to transport service issues within the provision-preservation-access use continuum,
- Investigate the motivations of the private sector to provide transport services in rural areas,
- Consider the government structures that organise and regulate these services along with the legal and policy frameworks in which they operate, both in Africa and Asia.
Key research questions in Phase 3:

- What is preventing services being scaled up and extended to remote areas where they would have most impact?
- Are rural transport subsidies an option in low income countries?
- What can be learnt from rural transport service operations and the institutional environment in which they function in Africa and Asia?

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Output: definitive guidelines on how the provision-preservation-services continuum can be improved in support of better livelihood opportunities for rural communities and have a positive impact on poverty reduction.

Impact: to improve accessibility and mobility for rural communities and to improve the overall livelihood outcomes of those communities, and, in particular, vulnerable groups and individuals within those communities.

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Understanding outcomes and impact: why LVRR?

- Rural people need access to markets, health facilities, education, employment, livelihood opportunities, civic services and social interactions
- Service providers and traders need access to rural people
- National, international and country-level mobility of people and freight is provided by the primary and secondary road networks
- LVRR connect to this and so allow rural people to access markets, health centres, education and the national road network, and allow service providers to reach villages
- In ReCAP countries, most people do not own motorised transport and so depend on transport services and service providers in order to benefit from LVRR roads (the beneficial outcomes and impacts)

Theory of changes for LVRR investments

- As road conditions improve, transport services increase
- Gradual modal shift (eg, from walking/carrying and motorcycle taxis to larger vehicles such as taxis, pickups, minibuses and trucks).
- Reductions in vehicle operating costs, together larger vehicles permitting economies of scale, should be reflected in lower passenger fares and freight tariffs
- As a result, more people will travel and more goods be carried, benefitting businesses and markets.
- This will contribute to beneficial outcomes and impacts relating to agricultural production, community health, education and economic activities, benefitting men, women and children.
Theory of changes for LVRR deterioration

- As road conditions deteriorate, transport services decrease
- Gradual modal shift (eg, from minibuses to 4x4 pickups and motorcycle taxis and walking/carrying).
- Increases in vehicle operating costs, together smaller vehicles reduce economies of scale and will be reflected in higher passenger fares and freight tariffs
- As a result, fewer people will travel and less goods are carried, restricting businesses and markets.
- This will contribute to worsening outcomes and impacts relating to agricultural production, community health, education and economic activities, with men, women and children suffering the consequences.

ReCAP

Theory of change evidence and examples

- Virtuous circle of investment examples
 - Nepal, Bangladesh, Kenya, Tanzania
- Vicious circle of deterioration examples
 - Eg, Liberia
- Unexpected examples
 - Eg, Ethiopia (Hintalo Wajirat), Ghana (Hatorgodo-Abor, Wechiau-Wa), Liberia (maintenance correlation)

- What has changed and why and what are the lessons?
Theory of change evidence and examples

• **Unexpected examples**
 – Eg, Ethiopia *(Hintalo Wajirat)*

Monitoring and Evaluation data collection

• ‘Before’ and ‘After’ data to compare
• Baseline surveys to establish current situation concentrating on SMART indicators (Specific, Measurable, Agreed, Relevant and Time-bound)
• Annual or follow-up surveys to re-measure SMART indicators and so measure outcomes and impacts
Information needed and appropriate indicators

- **Road information**
 - Design, purpose, conditions, critical points, etc.

- **Transport services information**
 - Transport numbers and volumes disaggregated
 - Transport operators
 - Transport users
 - Transport regulators
 - Safety and security

- **General and external issues**
 - Climate, prices, security, national events

- **Information about different ‘beneficiaries’**
 - Men, Women, Children
 - People with disabilities, disadvantaged groups, older persons
 - Businesses, commuters
 - Farmers and markets, etc.

- **What has changed and why and what are the lessons?**

Where to carry out Phase 2 research?

- Where are relevant and reliable LVRR datasets available to measure the ‘before’ situation?

- Is there interest and capacity to collect and interpret the current ‘after’ situation?

- Will we be able to determine and measure ‘what has changed and why’ and will people be able to make use of this information to improve their future policy and practices?

- Will the lessons be sufficiently ‘representative’ to contribute to the final ‘guidelines’ output?
Phase 2 research

• What information to collect and methodology?
 – Scoping report ideas
 – Workshop ideas

• Where to undertake the research?
 – Scoping report ideas
 – Workshop ideas

Thank you for your attention

www.research4cap.org

Follow ReCAP on:

www.research4cap.org
Safe Use of Motorcycles and Three-Wheelers for Rural Transport
George Malekela, AMEND

Background

- Rapid increase in number of motorcycles in many African countries
- Used as taxis to carry people and goods
- Widespread in rural areas
- Economic and social benefits
- Safety concerns

Registered motorcycles and three-wheelers in Tanzania

IMPARTS Workshop
Arusha, 12th November 2018
Research Project

- ‘Enhancing understanding on safe motorcycle and three-wheeler use for rural transport and the implications for appropriate training and regulatory frameworks’

Project Aims and Objectives

- **Aim:** To improve knowledge and understanding concerning effective ways of enabling rural people to benefit from the safe use of motorcycles and three-wheelers
- **Objective:** To enable the safe operation of rural motorcycles and three-wheelers to provide good, affordable and inclusive rural access for different groups of people
- **Emphasis:** Rural motorcycle taxis, rider training, appropriate regulatory frameworks and realistic enforcement methods
- **Essence:** Country studies and inter-country exchanges
IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Scope of Work

- **Inception Phase:**
 - Stakeholder engagement
 - Literature review
 - Inception report

- **Research Phase:**
 - Development of methodology
 - Research activities
 - Data analysis

- **Uptake and Embedment Phase:**
 - Country Discussion Papers
 - Workshops
 - Final Report
 - Policy briefs, journal articles and conference presentations

4-Country Activities

- Reviews of motorcycle- and three-wheeler-related legislation and policy
- Reviews of training
- Survey of benefits and disbenefits
- Investigations into potential of technology (excluding Ghana, including Rwanda)
Country-Specific Activities (1)

- Ghana:
 - Reanalysis of existing data
- Kenya:
 - Investigations into health issues
- Uganda:
 - Investigations into barriers to use

Country-Specific Activities (2)

- Tanzania:
 - Development of ‘Operations Manual’ for motorcycle taxi associations
 - Development of Instructor’s Manual for motorcycle and three-wheeler training
 - Review of existing training and licensing initiatives: training curriculum and mobile licensing service
Tanzanian Survey of Benefits and Disbenefits

- 282 respondents:
 - 103 Riders
 - 118 Passengers
 - 28 Owners
 - 29 Owners of freight who transport goods
 - 4 Non users
 - Zero 3-wheelers

- Topics covered:
 - Overall opinions
 - Economics and finance
 - Access and mobility
 - Injuries and health
 - Crime and personal security
 - Access to services and protective equipment

Tanzanian Survey Locations
Riders’ demographics

- **Number:** 103 motorcycle taxi riders (no three-wheelers)
- **Age:** Majority 20 to 30 years old, average 27 years
- **Gender:** 2 females & 101 males
- **Education:** 65% completed no higher than primary school

Graph:
- Frequency on the y-axis
- Age of Taxi rider (years) on the x-axis

Riders’ characteristics

- **Vehicle ownership:** 51% riders, 36% commercial agreement
- **Driving licence:** 29%
 Road Licence: 14%
 Insurance: 24%
- **Association membership:** 26%
- **Mobile phone ownership:** 79%
- **Training:** Vast majority self-taught or taught by friends or family. 3% formal training
- **Helmet use:** 81% always wear
Passengers’ demographics

- **Number:** 118 motorcycle taxi passengers
- **Age:** Majority under 40 years old
- **Gender:** More female than male
- **Mobile phone ownership:** 72%
 Internet: 42%

Benefits

- **Riders**
 - **Employment and income:** Average profit for last seven days was TZS 43,400 (GBP 14.70) – after all expenses paid. (110% of Gross National Income)
 - **Transport for health:** 85% transported someone in emergency; 78% believe they have saved someone's life

- **Freight owners**
 - **Freight:** 52% is items for sale in a shop
 - **Gender:** 41% were female (small business and farming)
 - **Mobile phones:** 52% use mobile phone to arrange transport
Safe Use of Motorcycles and Three-Wheelers for Rural Transport

George Malekela, AMEND

Benefits

- **Passengers**
 - **Access to health services:** 46% for health emergency (either themselves or household member), 68% for non-emergency
 - **Travel to markets and social engagements:** Most common destinations:
 - Market / shops (41%)
 - Health services (24%)
 - Social events (17%)
 - Work (10%)
 - **Convenience:** 90% said it was ‘very easy’ or ‘quite easy’ to arrange motorcycle transport. Valued for being convenient and fast (they go where no other mode can go)
 - **Mobile phone:** 44% use mobile phone to arrange transport

Disbenefits

- **Risk of injury:**
 - 75% of riders and 81% of passengers said risk of injury was ‘the worst thing about motorcycle and three-wheeler taxis’
 - 41% of riders and 13% of passengers had suffered an injury that led to loss of income, required medical attention or affected their family life
 - 37% reported ‘single vehicle crash/fall’ as the most common type of incident
 - 36% reported ‘roadway condition/damage/obstacle’ as the most common cause of the incident

- **Crime:**
 - 10% of riders had been victims of crime (of which 50% robbery, 40% verbal abuse). 3% of passengers had been victims of crime (all verbal abuse)
Key Findings - Tanzania

- Motorcycles are widely available
- No three-wheelers were found at any of the locations
- Difficult to find non-users
- Important for providing access to health facilities
- Mobile phones important in linking riders and passengers
- Injuries sustained in single-vehicle incidents when rider is alone, caused by rider error or road condition
- Vast majority learnt from friends/family or self-taught
- Low proportion of riders belonging to associations

Use as Emergency Transport

<table>
<thead>
<tr>
<th></th>
<th>Ghana</th>
<th>Kenya</th>
<th>Tanzania</th>
<th>Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riders</td>
<td>28</td>
<td>37</td>
<td>47</td>
<td>56</td>
</tr>
<tr>
<td>Passengers</td>
<td>76</td>
<td>81</td>
<td>85</td>
<td>91</td>
</tr>
</tbody>
</table>

Riders who have transported a passenger to a health facility in an emergency
Passengers who, either themselves or a household member, have used a motorcycle for emergency transport
Safe Use of Motorcycles and Three-Wheelers for Rural Transport
George Malekela, AMEND

Income vs Ownership

- Ghana: Riders’ average 7-day profit as a % of GNI: 66%
 - Riders’ ownership of 2- or 3-wheeler: 40%
- Kenya: Riders’ average 7-day profit as a % of GNI: 96%
 - Riders’ ownership of 2- or 3-wheeler: 60%
- Tanzania: Riders’ average 7-day profit as a % of GNI: 110%
 - Riders’ ownership of 2- or 3-wheeler: 51%
- Uganda: Riders’ average 7-day profit as a % of GNI: 69%
 - Riders’ ownership of 2- or 3-wheeler: 13%

Undergone formal training vs sustained injury in a crash

- Ghana: Riders who have received formal training: 1%
 - Riders who have been injured in a crash: 37%
 - Passengers who have been injured in a crash: 10%
 - Riders who have been injured in a crash: 37%
- Kenya: Riders who have received formal training: 19%
 - Riders who have been injured in a crash: 31%
 - Passengers who have been injured in a crash: 8%
 - Riders who have been injured in a crash: 31%
- Tanzania: Riders who have received formal training: 3%
 - Riders who have been injured in a crash: 41%
 - Passengers who have been injured in a crash: 13%
 - Riders who have been injured in a crash: 41%
- Uganda: Riders who have received formal training: 2%
 - Riders who have been injured in a crash: 48%
 - Passengers who have been injured in a crash: 15%
 - Riders who have been injured in a crash: 48%
IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Victims of Crime

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Discussion

George Malekela: gmalekela@amend.org
Tom Bishop: tbishop@amend.org

IMPARTS Workshop
Arusha, 12th November 2018
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

The Team

- **Robin Workman** – Team Leader
- Andrew Otto – Senior Researcher: LVRR Engineering Specialist
- **John Hine** – Senior Researcher: Rural Transport Economics
- Peter Njenga – Rural Transport Access Planning Specialist
- Fridah Mugo – Gender and Social Impact Specialist
- Grace Muhia – Local Researcher (Kenya)
- **Shedrack Willilo** – Local Researcher (Tanzania)
- Wynand Bezuidenhout - Transport Specialist

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

Background

- First Mile: up to 4 miles...
- First Mile issue explored by IFRTD in 2014/15
- Looks at benefits of improved access for small-scale farmers
- Kenya and Tanzania, two sites in each place

Research Objectives

- Identification of the specific elements of the transport system that can be improved in order to unlock growth in the smallholder value chain sector.
- Better advice to road planners on the best location for access improvements.
- Quantification of the economic benefits of better initial access.
Research Objectives

- A framework to provide advice to farmers and the authorities on the best pattern of transport in different circumstances.
- Better understanding of the role of different forms of transport in the small-scale agricultural environment, and the gender dimensions therein, and the needs to regulate them.

Progress

Phase 1 complete
- Inception

Phase 2 complete
- Literature review, scope, workshops

Phase 3 complete
- Data collection
Progress

Phase 4 planned
- Joint stakeholder workshop (Arusha)
- Dissemination
- Final report
- Scientific paper

Development
- Capacity Building and Knowledge Exchange
 - Partners: TARURA
 - Consider all levels from Ministry to Community
 - Steering group
- Uptake and Embedment
 - Dissemination
 - Informing policy
Provision – Preservation – Services Continuum

- **Provision**: Road construction, why and how they are provided, planning of new roads or upgrading
- **Preservation**: Road maintenance, preservation of the asset, how this is decided and prioritised
- **Services**: How the roads are used and what transport services are able to use them

Type of farms

- Smallholders
- Farmers that produce surplus for the market (not subsistence)
- Farms connected by rural roads
- Farms that have the same market
- At least 35% female farmers
IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Type of roads

- Access roads
- First Mile from farm to first collection point
- Earth or gravel standard

Kenya: trial sites

[Map of Kenya showing trial sites]
Objectives

The third phase of the work had the main objectives to:

- Undertake targeted data collection as outlined in the Phase 2 report
 - Household surveys,
 - Key Informant Interviews
 - Focus Group Discussions
 - Road Condition Surveys
Road Condition Surveys

Measurement (IRI)
- Visual
- DashCams
- Smartphone apps
- Accelerometers

Objectives

The fourth phase of the work has the main objectives to:
- Draft the range of outputs
- Undertake a number of knowledge dissemination exercises, including those most suited to output uptake at the farm and village level
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

Outputs

- Reports
- Technical papers / presentations:
 - Durban, October 2018
 - Arusha, November 2018
- Workshops:
 - Kenya and Tanzania, July 2017
 - Kenya and Tanzania, September 2018
 - Joint workshop in Arusha, part of Transport Services event, November 2018
- Scientific paper based on research outputs

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Results
Road survey results

- Roads/tracks generally in ‘Poor’ condition with poor drainage.
- Bottlenecks a major hindrance (mud, slipperiness, gradient, watercrossings/seasonal streams). High roughness in dry season
- Problems can be solved with minor investment (watercrossing structures & spot-improvement) and routine maintenance.
- Realignment of access roads could help with gradient and slipperiness
Agricultural Production

Kenya. Small farms (1.2 acres Kithimani, 0.4 acres Meru) and low net incomes (US$ 150 in Meru to $400 in Kithimani). Yields were higher in Meru but very low prices were offered to farmers.

Tanzania. Larger farms (1.9 acres for potatoes and 4.4 acres pineapples) The pineapple farmers had surprising high incomes (US $3000 to $5000).

Transport and Marketing Challenges

- Big differences between areas in organising transport.
- Major issues in the Meru and Madeke. Both areas rely heavily on head and backloading.
- Less problems in Kithimani and Matola, where a much wider diversity of transport used.
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

Challenges Farmers face in organising transporters and buyers to take produce in Tanzania (count of issues mentioned)

<table>
<thead>
<tr>
<th>Easy to organise transport?</th>
<th>Matola potatoes Yes: 64, no 64</th>
<th>Madeke, pineapples Yes 11, No: 111</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Problem</td>
<td>Other problems</td>
</tr>
<tr>
<td>Farm too remote</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Quantity to small</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Not enough buyers</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Route to difficult</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Market price too low /worthwhile</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Difficult to amalgamate loads</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Traders do not come</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Not enough transporters</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Difficult to agree</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Produce spoilt on journey</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poor mobile phone coverage</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Tanzanian Transport
Challenges Farmers face in organising transporters and buyers to take produce in Kenya (count of issues mentioned)

<table>
<thead>
<tr>
<th>Easy to organise transport?</th>
<th>Machakos</th>
<th>Meru</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Problem</td>
<td>Other problems</td>
</tr>
<tr>
<td>Farm too remote</td>
<td>46</td>
<td>15</td>
</tr>
<tr>
<td>Quantity to small</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Not enough buyers</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Route to difficult</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Market price too low /worthwhile</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Difficult to amalgamate loads</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>Not enough transporters</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Difficult to agree price Produce spilt on journey</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Meru Transport
Machakos Transport

Transport Costs

As with the pilot surveys head/backloading is the most expensive when expressed in costs per ton (or kg) -km. But further analysis show less differences once distance is taken into account.
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

First Mile Transport Data: Tanzania

<table>
<thead>
<tr>
<th></th>
<th>Madeke Farmers Pineapples</th>
<th>Matola Farmers, Potatoes</th>
<th>Matola Transporters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Head-load</td>
<td>Head-load</td>
<td>Motor-cycle</td>
</tr>
<tr>
<td>Observations</td>
<td>126</td>
<td>53</td>
<td>34</td>
</tr>
<tr>
<td>Mean load kg</td>
<td>37.1</td>
<td>91.9</td>
<td>85.7</td>
</tr>
<tr>
<td>Mean distance km</td>
<td>0.34</td>
<td>0.67</td>
<td>1.44</td>
</tr>
<tr>
<td>Mean Tsh/kg</td>
<td>33.9</td>
<td>18.9</td>
<td>23.4</td>
</tr>
<tr>
<td>Mean Tsh/kg-km</td>
<td>468.9</td>
<td>120.9</td>
<td>43.7</td>
</tr>
<tr>
<td>Median Tsh/kg-km</td>
<td>172.2</td>
<td>95.2</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Costs of different forms of transport for Tanzania, Mean data Tsh/kg-km, and modelled data on distance.

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Animal cart charge for potatoes Tsh/kg with distance

The effect of crop spoilage and first transport on net incomes

Two approaches were tried to identify the effect on net incomes. Tabulation and regression analysis.

The total average net effect (from tabulations) from French beans was 10 to 15%. For potatoes it was 30 to 36%, while for pineapples it was 30 to 40%. For the latter crops the results are based on both tabulations and regression analysis. – Meaningful regressions were not possible for French beans.
The Effect of Crop Losses and First Transport Costs on Net Incomes

<table>
<thead>
<tr>
<th></th>
<th>Kenya (green beans)</th>
<th>Tanzania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machakos</td>
<td>Meru</td>
</tr>
<tr>
<td>Estimated crop losses relating to 1st transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.7%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Median</td>
<td>7.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>1st Transport costs as % of net farmers incomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>6.4%</td>
<td>7%</td>
</tr>
<tr>
<td>Median</td>
<td>3.3%</td>
<td>5.8%</td>
</tr>
</tbody>
</table>

Prediction of the effect on net incomes of initial transport costs and crop losses from regression analysis

<table>
<thead>
<tr>
<th></th>
<th>Madeke pineapples</th>
<th>Matola potatoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net income per acre = f (acres, initial transport costs, yield, produce price, crop losses)</td>
<td>129 0.673 50.58</td>
<td>98 0.855 108.6</td>
</tr>
<tr>
<td>Observations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression R squared value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression F value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean effects on net incomes from applying regression coefficients to mean observations</td>
<td>-34.6%</td>
<td>-2.02%</td>
</tr>
<tr>
<td>Crop losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial transport costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial transport costs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Who pays for what? And when does transfer of ownership take place?

To get a greater understanding of the transport and marketing process data was collected on who pays for what transport and marketing activities. Different arrangements are practised in different places. Farmers can be penalized if crops are damaged during first transport.

Transfer of Ownership: Kenya

<table>
<thead>
<tr>
<th>Section</th>
<th>Kithimani</th>
<th>Meru</th>
</tr>
</thead>
<tbody>
<tr>
<td>When does farmer transfer ownership?</td>
<td>1 42 82</td>
<td>0 2 111</td>
</tr>
<tr>
<td>At farm before harvest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At farm after harvest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At collection point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When is the farmer paid?</td>
<td>9 3 113</td>
<td>0 4 107</td>
</tr>
<tr>
<td>An advance by buyer before transfer of ownership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When buyer takes possession</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After buyer takes possession</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What credit arrangements are there?</td>
<td>78 10</td>
<td>95 2</td>
</tr>
<tr>
<td>Through farm inputs (seeds fertilizer, insecticide)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Farmer’s payment arrangements Tanzania

<table>
<thead>
<tr>
<th></th>
<th>Potatoes</th>
<th>Pineapples</th>
</tr>
</thead>
<tbody>
<tr>
<td>When is the farmer paid?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An advance before transfer of produce</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td>When buyer takes possession</td>
<td>114</td>
<td>60</td>
</tr>
<tr>
<td>After buyer takes possession</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Both an advance and when buyer takes possession</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Both when buyer takes possession and afterwards</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>If there is a delay in payment how long after the buyer takes possession, is farmer paid?</td>
<td>3.6 days</td>
<td>4.1 days</td>
</tr>
<tr>
<td>Are farmers penalized if crop is found damaged after buyer takes possession?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not penalized</td>
<td>103</td>
<td>16</td>
</tr>
<tr>
<td>Are penalized</td>
<td>33</td>
<td>114</td>
</tr>
<tr>
<td>Sometime penalized</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Gender Issues

Women have smaller farms, lower incomes and less access to transport modes. Women also widely used for head/backloading to take crops from the farm to collection point.
A Gender Breakdown of Farmers’ Data

<table>
<thead>
<tr>
<th></th>
<th>Machakos</th>
<th>Meru</th>
<th>Matola</th>
<th>Madeke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>men</td>
<td>women</td>
<td>men</td>
<td>women</td>
</tr>
<tr>
<td>Number</td>
<td>76</td>
<td>52</td>
<td>79</td>
<td>47</td>
</tr>
<tr>
<td>Main crop acres</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Yield kg/acre</td>
<td>1,410</td>
<td>1,132</td>
<td>3,651</td>
<td>3,511</td>
</tr>
<tr>
<td>Net income US$</td>
<td>400</td>
<td>315</td>
<td>179</td>
<td>159</td>
</tr>
<tr>
<td>Distance to collection point</td>
<td>1.57</td>
<td>1.03</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>Ownership of transport %</td>
<td>63%</td>
<td>48%</td>
<td>27%</td>
<td>6%</td>
</tr>
<tr>
<td>Cost of 1st transport US cents/kg</td>
<td>1.3</td>
<td>1.4</td>
<td>0.86</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Gender Breakdown of Kenya Transporters data

<table>
<thead>
<tr>
<th></th>
<th>Machakos</th>
<th>Meru</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>men</td>
<td>women</td>
</tr>
<tr>
<td>Head/backloading</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Animal cart</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Men</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Women</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Women</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>Women</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Recommendations

- Raise awareness
- Extend motorable roads closer to farms
- Improve roads to facilitate truck access
- Stimulate transport services through roads
- Community participation in road maintenance
- Establish framework for community involvement

Recommendations

- Encourage local government involvement
- Establish district based coordinators
- Form/strengthen farmer’s associations
- Encourage farmers to liaise/amalgamate loads
- Increase competition amongst buyers
- Facilitate gender and social inclusion
- Add value at the farm
Evaluation of the cost-beneficial improvement of first mile access on farm marketing
Robin Workman, TRL ‘First Mile’ Team Leader, UK

Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Rural Access Index (RAI) Project – Overview
Robin Workman, TRL RAI Team Leader, UK

RAI Project – Overview
November 2018
Robin Workman, Team Leader

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Team members and their roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Leader</td>
<td>Robin Workman</td>
</tr>
<tr>
<td>Senior Researcher</td>
<td>Paul Starkey</td>
</tr>
<tr>
<td>Database Specialist (1)</td>
<td>Kevin McPherson</td>
</tr>
<tr>
<td>Data Analyst (2)</td>
<td>James Zihni</td>
</tr>
<tr>
<td>HDM-4 Specialist</td>
<td>Greg Morosiuk</td>
</tr>
<tr>
<td>Rural Transport / RAI Expert</td>
<td>John Hine</td>
</tr>
<tr>
<td>Statistician</td>
<td>Sritika Chowdhury</td>
</tr>
<tr>
<td>Geospatial / GIS Specialist</td>
<td>Justin Saunders</td>
</tr>
</tbody>
</table>
Rural Access Index (RAI) Project – Overview
Robin Workman, TRL RAI Team Leader, UK

Definition

- The RAI is defined as ‘the proportion of the rural population living within two kilometres of an all-season road’.
- Two kilometres was selected as ‘typically equivalent to a walk of 20-25 minutes’ (Roberts et al, 2006)

The three factors of RAI

- Population:
 - Identify the rural population
 - Measure it
- Location
 - Identify where the roads are
 - Maps, GIS, etc.
- Condition
 - Use local road organisation data
 - Interpret to identify all-season roads
Aim and Objective

- Aim is to develop, propose and obtain agreement on a harmonised approach to data collection and measurement of the Rural Access Index that is relevant, consistent and sustainable.
- Objective is to scale up implementation of the RAI across UN member countries in order to advance the status of SDG Indicator 9.1.1 to Tier II and eventually Tier I in the tier classification of the SDGs.

Phases

- Phase TG1: Scoping Study – Complete
- Phase TG2: Consolidate existing and proposed methods for data collection, revise the measurement approach with the World Bank
- Phase TG3: launch programme for rolling out measurement framework, collection of RAI data in 30 countries (incl. in all ReCAP countries) - to be implemented and adopted
Work Programme

ACTIVITY and MILESTONE SCHEDULE

TITLE: Consolidation, revision and pilot application of the Rural Access Index (RAI)

<table>
<thead>
<tr>
<th>Activity No.</th>
<th>TG1</th>
<th>TG2</th>
<th>TG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG1 (complete)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liaise with donors for cataloguing of existing data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establish Framework / methodology and revise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consult countries and select</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agree standards and QA measures and revise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establish mechanism to inform WB of data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investgate feasibility of accuracy of running</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific custodian framework for RAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identify funding sources for TG3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft framework for scaling up RAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inception Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Statement 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progress Statement 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Background

- Adopted as a development indicator for the Results Measurement System for IDA-14 (the 14th replenishment of International Development Association resources) in 2005
- Initial measurements of the RAI (obtained by several methods) for 64 countries were included in the World Bank Report ‘Rural Access Index: A Key Development Indicator’ (Roberts et al, 2006).
RAI has been widely used in studies and projects, the original 2006 data has not been systematically updated as originally intended

- UN Sustainable Development Goals (SDGs) set 232 SDG Indicators, defined by the UN Inter-agency and Expert Group on SDG Indicators (IAEG-SDGs) in 2016 (UN, 2016).
- SDG Indicator 9.1.1 ‘Proportion of the rural population who live within 2 km of an all-season road’

ReCAP/World Bank project to develop a new methodology for measuring the RAI in 2016

Pilot measurements of the RAI using this new methodology were carried out in eight ReCAP countries in Africa and Asia with financial support from ReCAP

The pilot countries were Ethiopia, Kenya, Uganda, Tanzania, Mozambique, Zambia, Nepal and Bangladesh
Rural Access Index (RAI) Project – Overview
Robin Workman, TRL RAI Team Leader, UK

- Currently doing for 15 new countries

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Recommendations from TG1

- Develop an RAI database of all UN countries.
- Develop new detailed RAI Measurement Methodology Guidelines
- Establish a web page for the exchange of knowledge about the measurement of the RAI / SDG Indicator 9.1.1.
- Prepare a schedule of actions that need to be taken to move SDG Indicator 9.1.1 to IAEG-SDGs Tier II status.
Develop one or more additional, alternative SDG Indicator(s) to provide additional relevant assessments of contemporary rural access.

Carry out additional research activities:

(i) Consultation with additional organisations
(ii) Comparative studies between different methods of measuring the RAI
(iii) Potential for future use of smartphone data

Key Tasks

2 Consult with ReCAP countries (NSOs, road agencies, transport departments), to explore scaling up the use of spatial data/remote sensing technologies for obtaining population and road network information.

4 Liaise with the World Bank and others to develop, assemble and rollout a complete catalogue of all RAI data known to exist (an inventory or database) as a baseline of existing data (2006 onwards), and examine the efficacy of such a catalogue for recording the method used to calculate each dataset and verification of their accuracy;
Key Tasks

5 Establish a mechanism through which any organisation measuring new values of RAI will notify the World Bank as custodian of SDG 9.1.1, so this information can be integrated into a schedule of future RAI measurements

9 Trial the proposed measurement framework, including data collection and verification process, in at least four ReCAP countries

Other Tasks

6. Investigate the feasibility of using an accuracy range across countries, and method-correction factors in order to accommodate variations in data collection by country;

7. Explore the viability of implementing a secondary rural access indicator, and calculate a more realistic value that is deemed more appropriate locally and aligned with the SuM4All Global Tracking Framework;

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Tasks

1 Establish a co-ordinated measurement framework with consistent data collection approach and methodology, in co-operation with the World Bank or other donor partners as required:
 - Keep RAI definition, but update ‘road condition’, ‘rural populations’, other parameters...
 - Review existing RAI data, review country data and decide which is relevant to RAI.
 - Establish framework to identify appropriate data, minimum quality standards, etc.

2 Consult with ReCAP member countries (both National Statistics Offices and relevant road agencies and transport departments), and engage with non-member countries and MDBs where appropriate, to explore the feasibility of scaling up the use of spatial data and techniques and high resolution remote sensing technologies for obtaining population data and road network information across multiple countries;
 - NSOs potential to provide population and spatial data?
 - Other sources......
3 Agree data standards and quality assurance measures (i.e. which takes precedence, data collected by individual countries, or data collected by the SDG custodian, the World Bank).

- Agree with whom?
- Population, location, condition
- Desk study of data quality for RAI, from custodian and countries

4 Liaise with the World Bank, AfDB and ADB (among others) to develop, assemble and rollout a complete catalogue of all RAI data known to exist (which could be in the form of an inventory or database) as a baseline of existing data (2006 onwards), and examine the efficacy of such a catalogue for recording the method used to calculate each dataset and verification of their accuracy;

- Collect all available existing RAI data
- Establish in a database and standardise formats
- Establish as a management system
- **Expect WB to host the database.** Agree format, content, access, etc.
5 Establish a mechanism through which any organisation or project intending to measure new values of RAI will routinely notify the World Bank as the current custodian of SDG 9.1.1, so that this information can be integrated into the World Bank planned schedule of future RAI measurements;

- Learn from other similar systems internationally
- Identify local organisation to manage data (NSO?)

6 Investigate the feasibility of using an accuracy range across countries, and method-correction factors in order to accommodate variations in data collection by country;

- Assess quality and accuracy of data...
- Calculate error ranges
- Establish correction values
7 Explore the viability of implementing a secondary rural access indicator, and calculate a more realistic value that is deemed more appropriate locally and aligned with the SuM4All Global Tracking Framework;
- Identify countries that have ‘issues’ i.e. IMTs or significant unclassified networks
- Potential for a secondary indicator for access to schools, health centres, etc.
- Link to SuM4All framework

8 Specify a clear custodian framework for collection of RAI datasets and set out roles and responsibilities for populating the RAI catalogue/inventory both centrally and at country level, as well as for quality assurance purposes;
- World Bank involvement
- Set parameters for framework, specifications, date of origin, etc.
- Clear responsibility for data collection
- Draft RAI Guideline
9 Trial the proposed measurement framework, including data collection and verification process, in at least four ReCAP countries:
- Select four ReCAP countries (criteria to follow)
- Carry out trials

10 Identify other funding sources and financial support outside ReCAP for broadening implementation of the Rural Access Index, with a view to demonstrating uptake and embedment in at least 30 countries during TG3:
- Use links to explore funding options
- Estimate funding required
11 Draft a framework for scaling up RAI data collection and measurement beyond ReCAP member countries, with a view to achieving greater geographic coverage in TG3, and a strategy for promoting SDG Indicator 9.1.1 from Tier III to Tier II, and from Tier II to Tier I in the UN classification;

- Focus on sustainability
- Maintain flexibility, provide options

12 Provide detailed recommendations on the way forward in TG3, including the application of the upgraded RAI methodology in all ReCAP countries: this being dependent on funding being identified and available.
Criteria for country selection

- Four ReCAP countries (Asia and Africa)
- Should be interested to participate
- At least one or two could be countries that were involved in the 2016 collection, so that results can be compared
- A range of issues could be useful to test different methodologies

Criteria for country selection

Shortlist:
- Data coverage
- Data management
- GIS mapping
- Sustainability in data collection
- Varied environments
- Correction factors and alternative values
Criteria for country selection

Final Decision
- Involvement of National Statistics Offices
- Availability of mobile phone data
- Likelihood of acquiring reliable and quality data
- Consult with ReCAP and other stakeholders

Information needed.....
- Previous RAI data
- Locally available data
- Spatial data
- GIS mapping
- Population databases
Rural Access Index (RAI) Project – Overview
Robin Workman, TRL RAI Team Leader, UK

Needed from partners…..

- Willingness to work with local NSOs
- Help to search for previous data
- Help to explore new spatial techniques for data collection
- Willingness to participate in data collection, verification and analysis for revised RAI

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Thank you for your attention

www.research4cap.org

Follow ReCAP on:

IMPARTS Workshop 12-13 November 2018, Arusha, Tanzania
Impact of the rural access infrastructures on transport services provision in DRC
Théodore Ngambila, Ministère des Infrastructures et Travaux Publics, DRC

IMPACT OF THE RURAL ACCESS INFRASTRUCTURES ON TRANSPORT SERVICES PROVISION – DRC CASE

1. DRC Presentation
 - Superficie : 2 345 000 km²
 - Population: 88 millions habitants
 - Rural population : 51 %

2. Transport network and modes
 - 16.238 km of river voies
 - 5.033 km of railways network
 - 152.000 km road network with
 - 58 129 km of trunk roads
 - 86 471 km of rural roads ;
 - 7 400 km of urban roads

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Impact of the rural access infrastructures on transport services provision in DRC
Théodore Ngambila, Ministère des Infrastructures et Travaux Publics, DRC

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

CASE OF RURAL ROADS IN SUD-UBANGI PROVINCE, NORTH-WEST DRC

- Main road Zongo-Gemena-Akula (385 km) rehabilitated in 2017-2018
- 600 km feeder roads converging to the main road rehabilitated in 2016-2017
Impact of the rural access infrastructures on transport services provision in DRC
Théodore Ngambila, Ministère des Infrastructures et Travaux Publics, DRC

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

<table>
<thead>
<tr>
<th>TYPES OF TRANSPORTS BEFORE REHABILITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Labour carrying</td>
</tr>
<tr>
<td>• Bikes</td>
</tr>
<tr>
<td>• Motorcycle taxis</td>
</tr>
<tr>
<td>• Three-wheelers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPES OF TRANSPORT AFTER REHABILITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bikes</td>
</tr>
<tr>
<td>• Motorcycle taxis</td>
</tr>
<tr>
<td>• Three-wheelers</td>
</tr>
<tr>
<td>• Light trucks</td>
</tr>
</tbody>
</table>
Impact of the rural access infrastructures on transport services provision in DRC

Théodore Ngambila, Ministère des Infrastructures et Travaux Publics, DRC

MAIN ROAD TRAFFIC BEFORE REHABILITATION

- Vehicules: 1 214 veh/year
- Moto taxis: 11 536 motos/year
- Bikes: 18 266 bikes/year

MAIN ROAD TRAFFIC AFTER REHABILITATION

- Vehicules: 2 548 veh/year
- Moto taxis: 20 812 motos/year
- Bikes: 15 841 bikes/year

TRANSPORT COST BEFORE

- 145 CDF (0.091 USD)/pessenger/km
- 578 CDF (0.361 USD)/ton/km

TRANSPORT COST AFTER

- 83 CDF (0.052 USD)/pessenger/km: decreasing of 43 %
- 474 CDF (0.296 USD)/ton/km: decreasing of 18 %

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Rural roads and transport services in Nepal
Mr Ram Chandra Shrestha, DoLIDAR, Kathmandu, Nepal

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

- Area: 147141 Sq.km
- Himalaya: 19%
- Hills: 64%
- Plain Area: 17%
- Population: 32 million
Rural roads and transport services in Nepal
Mr Ram Chandra Shrestha, DoLIDAR, Kathmandu, Nepal

Rural Roads in Nepal
Total Local Road Network – 57,632 km

Black Top
2004 km (3.5 %)

Gravel
12,823 km (22.2 %)

Earthen
42805 km (74%)

Rural Roads 57,632 + km Conditions

Condition of Road, Bhojpur

Condition of culvert, Bara

Road condition Terahthum

Bridge condition, Parsa

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Rural roads and transport services in Nepal

Mr Ram Chandra Shrestha, DoLIDAR, Kathmandu, Nepal

Routine Maintenance Progress

<table>
<thead>
<tr>
<th>S.N</th>
<th>Description</th>
<th>Unit</th>
<th>Target</th>
<th>Cumulative (up to Y4)</th>
<th>Total</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No of road</td>
<td>No</td>
<td></td>
<td>344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lengthen of Road</td>
<td>KM</td>
<td>3,067</td>
<td>4,500</td>
<td>5,167</td>
<td>546 km reduced due to PM,UG.</td>
</tr>
<tr>
<td>3</td>
<td>Crossing structure</td>
<td>m</td>
<td>4,000</td>
<td>3,500</td>
<td>4,880</td>
<td>Excluding slab and Hume pipe culvert.</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Upgrading of Roads and Bridge Construction

<table>
<thead>
<tr>
<th>S.N</th>
<th>Activities</th>
<th>POM Target (KM)</th>
<th>Completed</th>
<th>On-going</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Package (No)</td>
<td>Length (Km)</td>
<td>Package Length (Km)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Roads (km)</td>
<td>1400</td>
<td>29</td>
<td>349</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Bridge (m)</td>
<td>2000</td>
<td>14</td>
<td>398</td>
<td>8</td>
</tr>
</tbody>
</table>
Rural roads and transport services in Nepal
Mr Ram Chandra Shrestha, DoLIDAR, Kathmandu, Nepal

Livelihood Promotion of RMG

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Livelihoods Promotion by RMG

<table>
<thead>
<tr>
<th>S.N</th>
<th>Activities</th>
<th>Use of wage income</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Member of local cooperative</td>
<td>80%</td>
</tr>
<tr>
<td>2.</td>
<td>Engaged family members in animal husbandry, vegetable cultivation, grocery shop etc.</td>
<td>60%</td>
</tr>
<tr>
<td>3.</td>
<td>Constructed toilet</td>
<td>40%</td>
</tr>
<tr>
<td>4.</td>
<td>Renovation of house</td>
<td>30%</td>
</tr>
<tr>
<td>5.</td>
<td>Land purchased at local level</td>
<td>30%</td>
</tr>
</tbody>
</table>
Rural Transport Services: Reaction to Improved Road Infrastructure

1. Naubise – Chautara Road: Connects rural villages to District headquarter
 • Length = 10.5 km
 • Surface type: Gravel, Stone pitching
 • Condition: Good
 • Cost of rehabilitation = 1 million US$
 • Date of completion = 2016
 • Fare per person = 20 cent

<table>
<thead>
<tr>
<th>Type of Transport Service</th>
<th>Before Improvement</th>
<th>After Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Bus</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Jeep/Pick ups</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>Trucks (light and heavy)</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>No of shops increased</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
Rural Transport Services: Reaction to Improved Road Infrastructure

2. Chautara – Melamchi Road:
(Connecting Melamchi, market centre to District headquarter)
• Length = 23.5 km
• Surface type: Gravel, Stone pitching
• Condition: Good
• Cost of rehabilitation = 1.5 million US $
• Date of completion = 2016
• Fare per person = 1.5 US $

<table>
<thead>
<tr>
<th>Type of Transport Service</th>
<th>Before Improvement</th>
<th>After Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Bus</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Jeep/Pick ups</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Trucks (light and heavy)</td>
<td>30</td>
<td>510</td>
</tr>
<tr>
<td>Motorcycles</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>No of shops increased</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Rural roads and transport services in Sierra Leone
Mr Tamba Amara, Sierra Leone Roads Authority, Freetown, Sierra Leone

SIERRA LEONE PRESENTATION

INTERACTIONS BETWEEN IMPROVED RURAL ACCESS INFRASTRUCTURE AND TRANSPORT SERVICES PROVISION (IMPARTS)

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

DISTRICTS OF SIERRA LEONE

PRESENTATION DATA GOT FROM SURVEY DONE IN THE TONKOLILI DISTRICT (CENTRAL SIERRA LEONE)
TYPICAL TRANSPORT SERVICES ON LOW VOLUME ROADS IN RURAL SIERRA LEONE

- MOTORBIKES
- CARS
- PICKUPS AND 4 WHEEL DRIVE
- MINI VANS
- FREIGHT TRUCKS

Road leading to market center and mode of intervention / year

<table>
<thead>
<tr>
<th>Road section</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Magburaka - Masumalie</td>
<td>No work</td>
<td>Rehab.</td>
<td>Rehab.</td>
</tr>
<tr>
<td>2 Yonibana - Petefu</td>
<td>Grading</td>
<td>Grading</td>
<td>Grading</td>
</tr>
<tr>
<td>4 Makali - Makong</td>
<td>No work</td>
<td>No work</td>
<td>No work</td>
</tr>
<tr>
<td>5 Magburaka - Magbass</td>
<td>No work</td>
<td>No work</td>
<td>No work</td>
</tr>
</tbody>
</table>
Rural roads and transport services in Sierra Leone
Mr Tamba Amara, Sierra Leone Roads Authority, Freetown, Sierra Leone

Pictures of typical roads leading to 2 separate market centers

<table>
<thead>
<tr>
<th>Village / Market center</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Masombri</td>
<td>104</td>
<td>54</td>
<td>110</td>
</tr>
<tr>
<td>2 Petefu</td>
<td>15</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>3 Masanga</td>
<td>55</td>
<td>37</td>
<td>70</td>
</tr>
<tr>
<td>4 Makong</td>
<td>70</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>5 Magbass</td>
<td>25</td>
<td>34</td>
<td>30</td>
</tr>
</tbody>
</table>

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Indicators

<table>
<thead>
<tr>
<th>Name of market center</th>
<th>Available transport services / Number operating along route</th>
<th>With intervention on road leading to village/market ct</th>
<th>Without intervention on road leading to village/market ct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Motorbikes / Okadas No.</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2 Light vehicles No.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3 Mini bus / Poda poda No.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4 Freight / Trucks No.</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total No.</td>
<td>104</td>
<td>15</td>
</tr>
</tbody>
</table>

No. of trips per day (normal day)

<table>
<thead>
<tr>
<th>Available transport services / Number operating along route</th>
<th>With intervention on road leading to village/market ct</th>
<th>Without intervention on road leading to village/market ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motorbikes / Okadas No.</td>
<td>63</td>
<td>8</td>
</tr>
<tr>
<td>2 Light vehicles No.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3 Mini bus / Poda poda No.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 Freight / Trucks No.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total No.</td>
<td>65</td>
<td>8</td>
</tr>
</tbody>
</table>

Fares to District Centers

<table>
<thead>
<tr>
<th>Name of market center</th>
<th>Oct-16</th>
<th>Oct-17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Name of village (Tonkolili District - rural)</td>
<td>Name of village (Tonkolili District - rural)</td>
</tr>
<tr>
<td></td>
<td>With intervention on road leading to village/market ct</td>
<td>Without intervention on road leading to village/market ct</td>
</tr>
<tr>
<td></td>
<td>Masombrie</td>
<td>Petefu</td>
</tr>
<tr>
<td></td>
<td>43.6</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Available transport services / Number operating along route

<table>
<thead>
<tr>
<th>Name of market center</th>
<th>Available transport services / Number operating along route</th>
<th>With intervention on road leading to village/market ct</th>
<th>Without intervention on road leading to village/market ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motorbikes / Okadas No.</td>
<td>50</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>2 Light vehicles No.</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3 Mini bus / Poda poda No.</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4 Freight / Trucks No.</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total No.</td>
<td>54</td>
<td>32</td>
<td>37</td>
</tr>
</tbody>
</table>

No. of trips per day (normal day)

<table>
<thead>
<tr>
<th>Available transport services / Number operating along route</th>
<th>With intervention on road leading to village/market ct</th>
<th>Without intervention on road leading to village/market ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motorbikes / Okadas No.</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>2 Light vehicles No.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 Mini bus / Poda poda No.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 Freight / Trucks No.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total No.</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

Fares to District Centers

<table>
<thead>
<tr>
<th>Name of market center</th>
<th>Oct-16</th>
<th>Oct-17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Name of village (Tonkolili District - rural)</td>
<td>Name of village (Tonkolili District - rural)</td>
</tr>
<tr>
<td></td>
<td>With intervention on road leading to village/market ct</td>
<td>Without intervention on road leading to village/market ct</td>
</tr>
<tr>
<td></td>
<td>Masombrie</td>
<td>Petefu</td>
</tr>
<tr>
<td></td>
<td>25.5 km</td>
<td>6.6 km</td>
</tr>
</tbody>
</table>
Rural roads and transport services in Sierra Leone

Mr Tamba Amara, Sierra Leone Roads Authority, Freetown, Sierra Leone

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Unit</th>
<th>Name of village (Tonkolili District - rural)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With intervention on road leading to</td>
</tr>
<tr>
<td>Name of market center</td>
<td></td>
<td>Masumbrie</td>
</tr>
<tr>
<td>District center town - Magburaka</td>
<td></td>
<td>Magburaka</td>
</tr>
<tr>
<td>Distance of village from District Ct. (Km)</td>
<td></td>
<td>43.6</td>
</tr>
<tr>
<td>Name of road serving market center</td>
<td></td>
<td>Magburaka - Masumbrie</td>
</tr>
<tr>
<td>Available transport services / Number operating along route</td>
<td></td>
<td>25.5 km</td>
</tr>
<tr>
<td>1 Motorbikes / Okadas</td>
<td>No.</td>
<td>100</td>
</tr>
<tr>
<td>2 Light vehicles</td>
<td>No.</td>
<td>3</td>
</tr>
<tr>
<td>3 Mini bus / Poda poda</td>
<td>No.</td>
<td>2</td>
</tr>
<tr>
<td>4 Freight / Trucks</td>
<td>No.</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>No.</td>
<td>110</td>
</tr>
<tr>
<td>No. of trips per day (normal day)</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>1 Motorbikes / Okadas</td>
<td>No.</td>
<td>80</td>
</tr>
<tr>
<td>2 Light vehicles</td>
<td>No.</td>
<td>1</td>
</tr>
<tr>
<td>3 Mini bus / Poda poda</td>
<td>No.</td>
<td>1</td>
</tr>
<tr>
<td>4 Freight / Trucks</td>
<td>No.</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>No.</td>
<td>83</td>
</tr>
</tbody>
</table>

Fares to District Centers

<table>
<thead>
<tr>
<th>Freight transport</th>
<th>Le/Person</th>
<th>Le/Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Motorbikes - rice</td>
<td>20,000.00</td>
<td>30,000.00</td>
</tr>
<tr>
<td>2 Light vehicles - rice</td>
<td>15,000.00</td>
<td>-</td>
</tr>
<tr>
<td>3 Truck - rice</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Motorbikes are typical for passenger and freight transport in Sierra Leone
South Sudan Rural Roads

By: George Duku & Aduot Madit

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

Overview of the SSRRP

- Development Objectives - to enhance all season road connectivity to agricultural services for rural communities in high agricultural potential areas.

- Components –
 a) Upgrading & Rehabilitation of Selected Rural Roads, 150km
 b) Maintenance & Spot Improvement of Selected Rural Roads, 300km
 c) Institutional Development for Rural Infrastructure Management
South Sudan Rural Roads
George Duku and Aduot Madit, Ministry of Roads and Bridges, South Sudan

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania
Overview of the SSRRP

Yei-New Lasu Road Before (left) and After (right)

IMPARTS Workshop, 12-13 November 2018, Arusha, Tanzania

<table>
<thead>
<tr>
<th>S/N</th>
<th>PDO Indicators</th>
<th>Baseline</th>
<th>Planned</th>
<th>Actual Achieved as 2013</th>
<th>Actual Achieved as 2014</th>
<th>Actual Achieved as 2015</th>
<th>Actual Achieved as 2016</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Share of rural population with all season access</td>
<td>0</td>
<td>36,515</td>
<td>32,863</td>
<td>43,413</td>
<td>43,413</td>
<td>43,413</td>
<td>Increased settlement within 2km of the project roads</td>
</tr>
<tr>
<td>2</td>
<td>Reduction in Travel time on targeted project roads</td>
<td>3 m/km</td>
<td>1</td>
<td>2.1</td>
<td>1.8</td>
<td>1.3</td>
<td>1</td>
<td>Average of the travel time on all project roads</td>
</tr>
<tr>
<td>3</td>
<td>Number of Agricultural Centers connected to the roads</td>
<td>0</td>
<td>44</td>
<td>15</td>
<td>30</td>
<td>38</td>
<td>39</td>
<td>Number of social and economic infrastructure connected to all season roads</td>
</tr>
<tr>
<td>4</td>
<td>Direct project beneficiaries of which % are female</td>
<td>0</td>
<td>91,287</td>
<td>61,048 (48.1%)</td>
<td>71,290 (30%)</td>
<td>91,090 (30%)</td>
<td>110.8 (30%)</td>
<td>Beneficiaries within 5km of the project roads on both sides of the road</td>
</tr>
<tr>
<td>5</td>
<td>Employment Generated by road works</td>
<td>0</td>
<td>-</td>
<td>205</td>
<td>396</td>
<td>601 (535 male, 66 female)</td>
<td>601 (535 male, 66 female)</td>
<td>National Staff employed on road works</td>
</tr>
</tbody>
</table>